Regulatory Activities for On-road Vehicles in the U.S.

Kevin Brown March 21, 2023

13th VERT Forum EMPA, Dübendorf, Switzerland

Outline

Light-Duty Vehicles

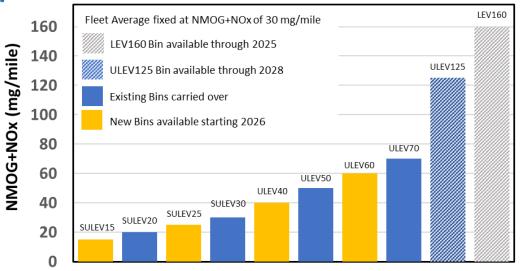
CARB LEV IV vs. soon to be released EPA LD Multipollutant Rule

Heavy-Duty On-Road Engines

- CARB Omnibus vs. EPA Clean Trucks
- SwRI Technology Demonstration Program

Off-Road Engines

- CARB Tier 5 Regulatory Development
- SwRI Technology Demonstration Program



LD and MD Passenger Vehicles - CARB ACC II LEV IV

Standards based on Cost Effective Emissions Reduction in & Best Performing Vehicles

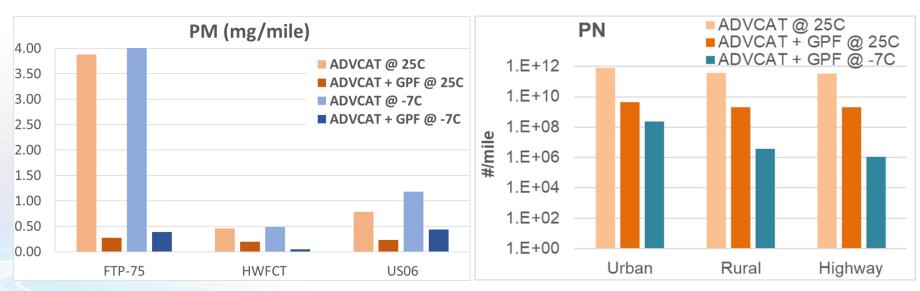
LEV IV LDV NMOG+NOx requirements:

- Declining % ZEV inclusion in 30 mg/mile
 FTP Fleet Average from 2025 to 2030
- Standalone US06 and SC03 Limits
- Partial Soak, Quick Drive-Away, 10°C NOx Limits
- PHEV Minimum Technical Requirements
- High Power Cold Start Limits for PHEVs
 - Exempt for >40 mile US06 capable PHEVs

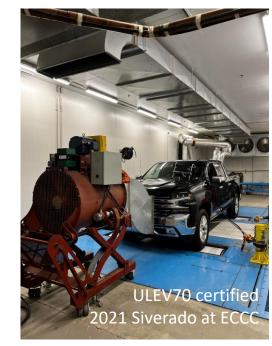
LEV IV LDV and MDPV Bins

%ZEVs in Fleet Average

Model Year	Maximum Percent ZEVs+"emission- adjusted PHEVs" ¹			
2025 ²	100%			
2026	60%			
2027	30%			
2028	15%			
2029+	0%			


LD PM Limits:

- FTP: 1 mg/mile (50% in MY2026, 75% in MY2027 and 100% in MY2028+)
- US06: 3 mg/mile
- MDV Class 2b and 3 trucks at 8 and 10 mg/mile!!



Testing in Support of EPA Multipollutant Rule Development

- MECA provided updated catalysts and gasoline particulate filters to US EPA and Environment and Climate Change Canada to:
 - quantify emission reductions potential, and
 - to confirm technical ability to measure PM at levels <0.5mg/mile
 - aged to full useful life / tested at ambient & -7 °C / in-use

 Testing confirmed the ability to measure PM emissions to <0.5 mg/mile over all test cell certification cycles at 25 °C and -7 °C

What to Expect in EPA's LD Multipollutant Proposed Rule

- Expect release about mid-April
- CO₂ standards expected to factor in President's 2030 EV penetration rate ~50%
- Single vehicle standards with no ZEV averaging at vehicle level
- LD Tier 4 Standards for MY 2027-2032
 - Expect NMOG+NOx fleet average phase down from 30 mg/mile & include ZEVs
 - FTP and US06 phased-in PM standard to potentially as low as 0.5 mg/mile
 - Expect to see Cold FTP (-7°C)
- Expect to require further ICE technology with increasing penetration of GPFs, advanced fuel injection, and hybrid powertrains

HD Highway CARB Omnibus vs. EPA Clean Trucks Regulation

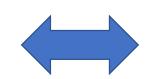
		CARB – HHD	EPA - HHD		
	MY 2027-2030		MY 2031+	MY 2027+	
Duty Cycle	Intermediat e Useful Life 435,000 miles	Full Useful Life 600,000 miles	Full Useful Life 800,000 miles	Full Useful Life 650,000 miles (750,000 miles cert tested)	
FTP / RMC (mg/hp-hr)	20	35	40	35	
LLC (mg/hp- hr)	50	90	100	50	
Idle (g/hr)	5	5	5	10	

EPA Streamlining and Compliance Flexibilities

- Single Stage in 2027 no interim 2024
- 2-Bin Moving Average Window:
 - Bin 1 is <6% power and Bin 2 is >6%
- PEMS Accuracy Margin: 5 mg/hp-hr
- Interim Compliance Margin: 15 mg/hp-hr
- Ambient temperature correction (above right)

PM standard: 5 mg/hp-hr for FTP/RMC/LLC cycles

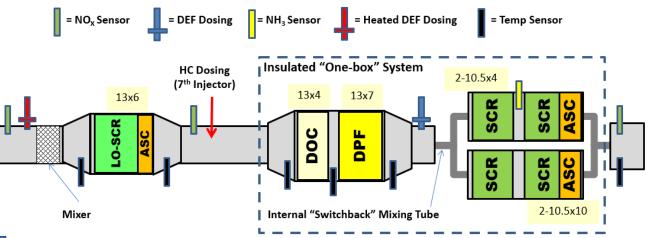
NMHC standard: 60 mg/hp-hr for FTP/RMC/LLC cycles


EPA Stage 3RW Low NO_x Demonstration Engine at SwRI

2017 Cummins X15 Engine

OCV: Oil Control Valve

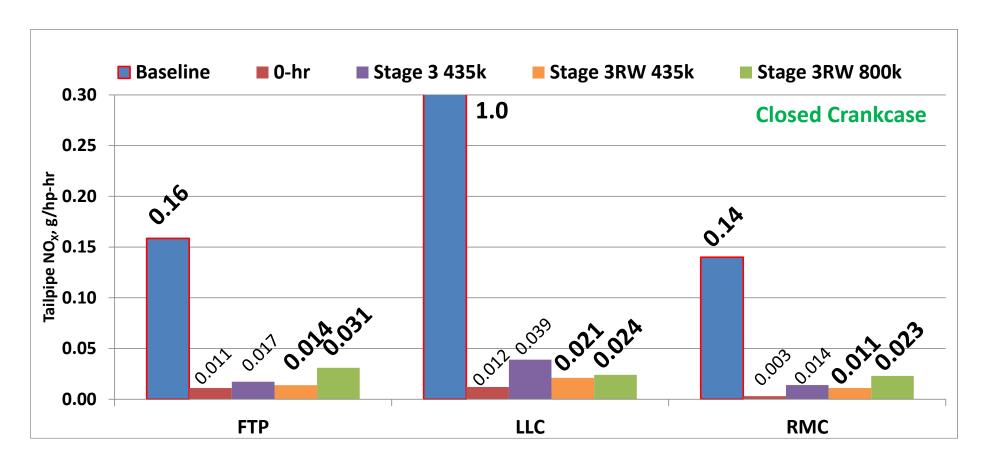
Full System Details SAE Paper 2021-01-0589



Cylinder Deactivation

Advanced Low NO_X Aftertreatment (Dual SCR-Dual Dosing)

Targets:


- FTP/RMC NO_x 0.02 g/hp-hr
- Lowest feasible LLC and in-use NO_x
- No adverse GHG impact

EPA Updates

- Change zCSF to DOC+DPF
- Improved downstream DEF mixing

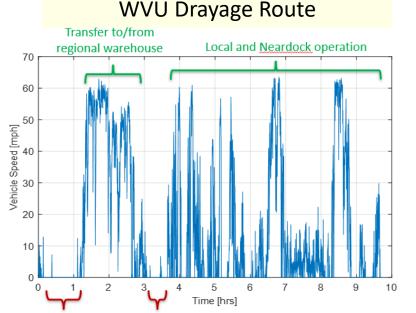
HD Low NO_x Program Results at SwRI

NO_x Tailpipe emissions 90%+ <Baseline

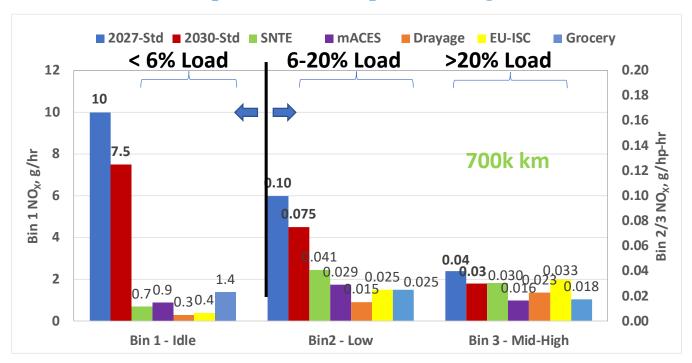
 Low Load emissions (LLC) are 25X lower and comparable to high load

Moved to Closed Crankcase Ventilation (CCV)

Reduced NO_x by additional ~ 0.006+ g/hp-hr


Real-World Duty Cycles Measurements

Each of these cycles is a real working route that was driven with multiple actual Class 7 and Class 8 trucks


Cycles represented a wide variety of different kinds of vehicle operations

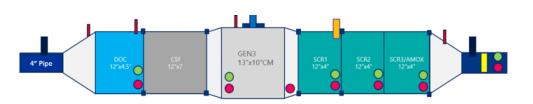
Recorded Vehicle Data was used to develop speed/load profiles that could be translated to Laboratory dynamometer

Field Duty Cycle Results (3B-MAW) - Stage 3RW 700k km

- Real-World Duty Cycles were transposed to Test Cell Cycles
 - covers all operations, no low power exclusions, includes cold-start
- NO_X emissions were evaluated over Real-World Duty Cycles using 3Bin-MAW method
 - well below CARB 2027 (dark blue) are CARB 2031 (dark red) in-use standards shown on left
 - Idle and Low Load emissions (Bins 1&2) comparably controlled as mid-high load (Bin 3)

Nonroad Low NO_x Demonstration Program

Overall goal of Nonroad Low NO_X effort is to demonstrate production feasible technologies to reduce emissions:


- NO_x by 90% (nominal target of 0.04 g/kw-hr)
- PM by 75% (nominal target of 0.005 g/kw-hr)
- Extended Useful Life target at 12,000 hours (test at 8,000 hours)

GHG Standards Concepts:

- 56kw to 560kw 5% to 8.6% reduction
- N₂O and CH₄ caps

Other Elements

- Nonroad Low Load Cycle
- 3B-MAW In-Use standard & possible OBM?
- Longer Useful Life (12k hours > 56kw ?)
- Some form of OBD

John Deere 6068 (6.8L) Tier 4f Engine

Preliminary Results with 12k hour hydrothermally aged parts

Cycle	EO NO _x , g/kw-hr	TP NO _x , g/kw-hr	NO _x Efficiency, %	CO ₂ , g/kw-hr	Baseline CO ₂ , g/kw-hr
Cold NRTC	2.3	0.138	93.9	763	761
Hot NRTC	2.4	0.004	99.8	741	747
Composite NRTC	2.4	0.011	99.5	745	748
RMC C1	2.7	0.009	99.7	689	697
LLAC	4.1	0.011	99.7	832	836

Summary and Conclusions

- With next set of regulations, US is finalizing the last set of criteria pollutant standards from combustion engines.
- Emission control technology evolution supporting significant further pollutant reductions
- Predominant GHG reductions to come from EV penetration into fleet
- Regulations are targeting tighter criteria standards to achieve cleanest possible remaining ICE vehicles.

Contact: KBrown@meca.org, Further information: www.meca.org

