

Hospital Bed Protection System

«Baldachin»

for an Intermediate Care Setting

J. Mayer.

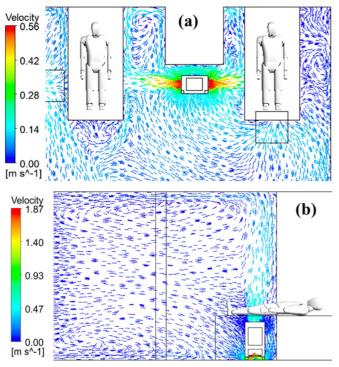
NanoCleanAir GmbH

Real Nano Clean Air

Covid=19=und die Lunge - Pneumologie - Universimed - Medizin im Fokus

What is an Intermediate Care Unit (IMC) edizin - Hämatologie & Onkologie - Allgemeine Innere Medizin Contenu en

- A growing number of patients with increasingly complex or specialized diseases
- Treatment requirements of some of these patients exceed the capacity of standard nursing units.
- But treatment requirements for these patients do not justify admission to an intensive care unit.
- Need for *special units (intermediate care units)*
 - highly specialized treatment and close monitoring,
 - intermediate role between the standard care unit and the intensive care unit.
- Sources:
 - C. Waydhas et al., Intermediate care units. Recommendations on facilities and structure, Med Klin Intensivmed Notfmed 2018 · 113:33–44
 - https://www.universimed.com/ch/article/pneumologie/covid-lunge-85382



© CRISTIAN CASANELLES, Tempura E+

Standard bedside monitoring Electrocardiographic/heart rhythm Non-invasive blood pressure measurement Intra-arterial blood pressure measurement Central venous pressure measurement Temperature Pulse oximetry Breathing rate measurement Monitoring with connection to a central point Blood gas analysis

Real Air

What is the problem of mobile air cleaning systems in IMC?

Fig. 9. Airflow distribution flow fields from the portable air purifier (a view.

- Computational study by Lip: 10-bed ward station
 - Effectivity below 50%, multiple Air Purifiers (HEPA)
 bedside in optimized position
 - Turbulences distribute virus-containing aerosols
 - Cause of the turbulences are:
 - Overall airflow in the ward station
 - Local turbulences created by the Air Purifier
 - Source: Lip H.W. et al, The myth of air purifier in mitigating the transmission risk of SARS-CoV-2 Virus, https://doi.org/10.4209/aaqr.210213
- Conclusions
 - Pathogens have to be captured close to the source
 - Turbulent air currents are to be avoided

New buildings, full room air circulation (floor to ceiling) with HEPA (14) filtration or 100% fresh air:

- The air of the entire ward needs to be filtered or climatized: high energy and/ or material costs
- Complicated and expensive fixed installations
- No flexibility to change ward rooms for 20+ years without significant cost and downtime

"A Problem in the IMC is a Problem for the Hospital"

- Infected patients (with mild infections, like flue, covid) are the number one capacity limiters of hospitals since they block the IMCs
- If one patient with an infectious, air-transmitted disease (influenza, covid, hrV) is in the IMC, no other, freshly operated patient should be close by
- The consequences can be dire, as we have seen during the pandemic:
 - Every patient less in the IMC limits the number of elective surgeries or critical patients that can be admitted
 - Increase in the number of sick-leave days, further reducing hospital capacity
 - Negative impact on hospital finances

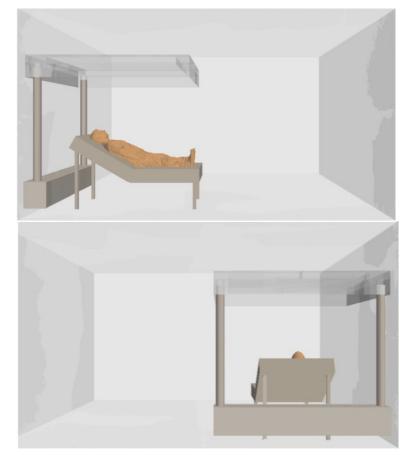
Solutions: Shield and Sink Strategy for Intensive Care Units (P. Hunziker, Basel)

BMJ Open Minimising exposure to respiratory droplets, 'jet riders' and aerosols in airconditioned hospital rooms by a 'Shield-and-Sink' strategy

Patrick Hunziker 💿 1,2

- IMC patients are awake and mobile
- IMC patients don't tolerate restrictions like a shield

o NanoClean Air

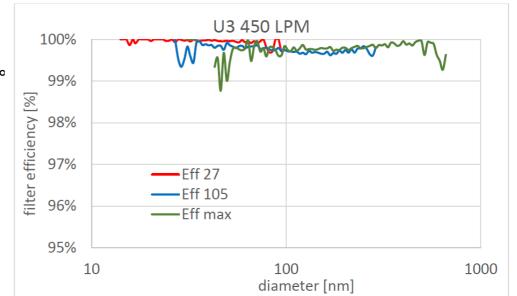

The NCA - Baldachin Concept

Central Goal

 Protect patients in the ward & personnel from an infectious patient

Clinical Need

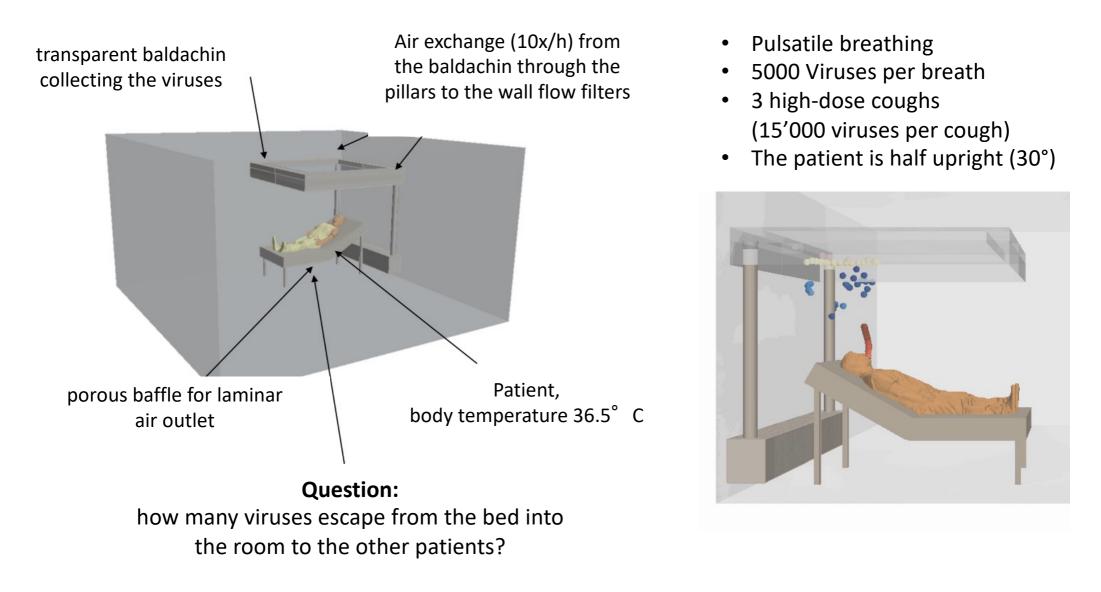
- Mobile and safe to handle
- 100% Cleanable
- No interference with surveillance and support systems
- Independent of the bed
- Free mobility of patients and caretakers
- Reliable protection (patient sitting, coughing)
- Silent
- Highly effective, i.e., no need to isolate patients with non-life-threatening infections


The Concept

- A mobile unit, laminar flow from bottom to ceiling
- Transparent baldachin contains patient care area
- Slim construction without support columns
- 180 m³/h air exchange rate: > 20 x/h
- Noise < 35 dB(A), low frequency, relaxing noise

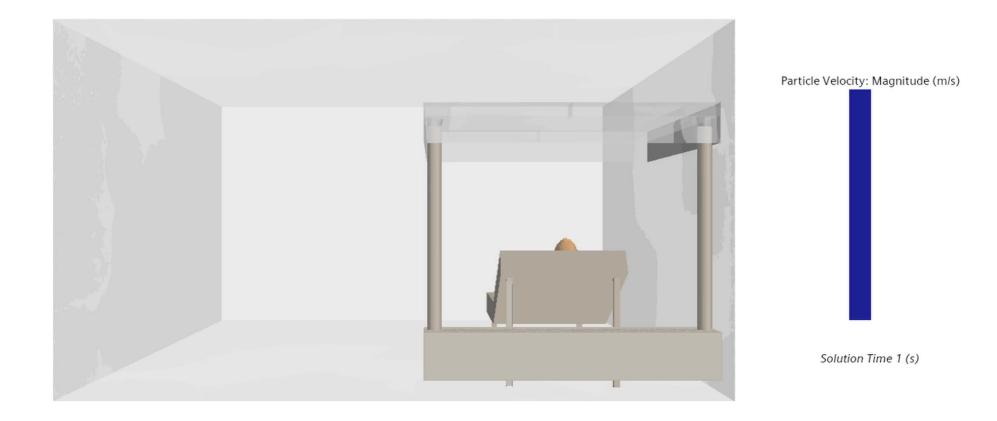
Core Elements of the NCA Baldachin Concept

- Laminar flow, supported by the patient's thermal uplift, minimizes the risk of ۲ pathogenic aerosols escape
- Use of ceramic wall flow filters ۲
 - Thermal stability allows sterilization >200°
 - > 99.999% Virus filtration efficiency
 - > 99% efficiency over the entire range of pathogenic aerosols (100nm-1µm)
 - High particle storage capacity
 - 100% proof tested

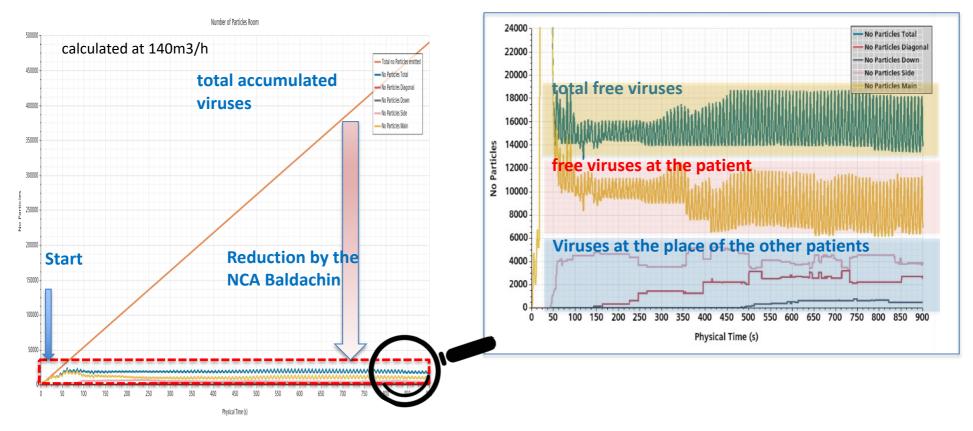


- Porous, 360° air collectors designed to ac Figure 16: Filter efficiency measured at 450 LPM (0.5cm/s face velocity) entire collector length
- Baldachin to create a defined ceiling and to avoid "dead spaces" ۰

Test organism: Bacteriophagae, ca. 100nm



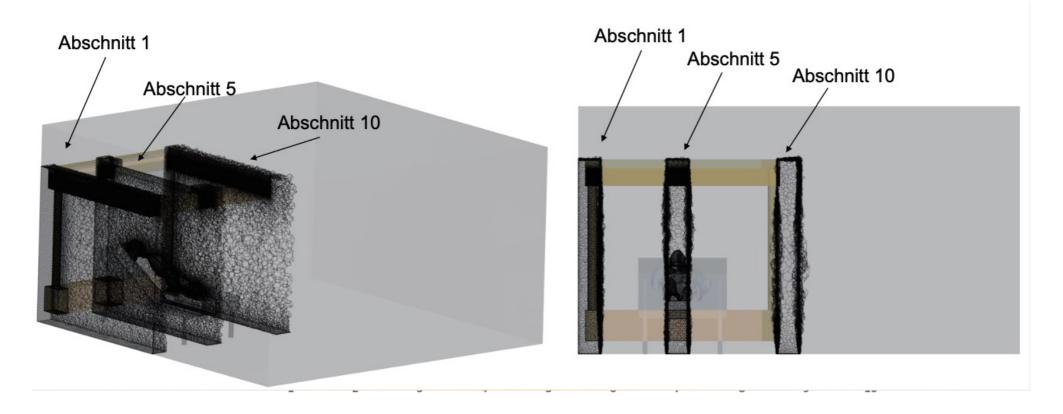
Simulation – Model of a Coughing Patient in Intermediate Care



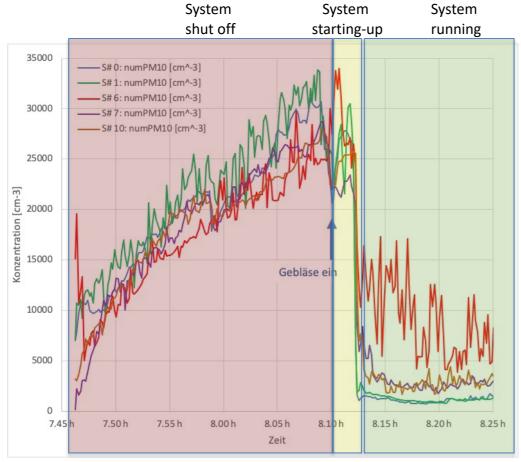
Simulation – «Virus flow»

co Nano Clean Air

Simulation - Visualization of Virus Distribution and Clearance Effectivity


- 0.5 mio viruses are emitted over 15 mins and would stay in the room if not for the NCA Baldachin:
 - Inside the bed area: remaining virus load corresponds to 3 breaths, >97% are filtered out
 - **Outside the bed area**: virus load corresponding to a single breath escapes
- Conclusion: < 1% Escape ratio:

to illustrate: if in the entire patient ward, just the virus load of a single breath is present, in a 4-patient ward (100m²), there would be less than one virus per minute from this patient to breathe!


Simulation – Lateral virus distribution inside the bed area

Segmentation of the model – cumulating over height and depth

- Concentration over the patient's head
- Viruses beside the bed area are primarily accumulating underneath the Baldachin

Verification: Measurement of Performance on a Bed

co Nano Clean Air

Setting:

- Aerosol source at the patient's head
- Heating plate to simulate heat emission by the patient
- S1, S7, S10, S0 measure concentration outside the bed
- S6 measures source emission
- System shut off: homogenous accumulation of particles
- *System starting-up:* concentration of particles drops within less than a minute: Fast clearance of disturbances
- **System running:** comparable to simulation: stable low levels at the caregiver's position, patient's breathing air is cleaned up as well efficiently.
- *Limitation:* Isolated system, does not consider airflow across the room (in reality limited by curtains).

Integration of the Baldachin in an Intermediate Care Unit

- Bed area covered
- Unhampered accessibility by caregivers.
- No influence on positioning and accessibility monitoring a life support instrumentation
- No change in logistics (bed placement)
- Cleanable
- Noise (< 40 dBA, low frequency) is not perceptible in the room settings
- Experimentally verified efficiency in protecting the environment
- High clearance performance after a severe contamination event, e.g. coughing phase of a patient

Why is the NCA - Baldachin a preferable solution for hospitals, day clinics, and elderly homes?

- Unparalleled protection of patients and employees without reducing patient comfort or complicating patient care
- Flexibility: less than 2 hours to provide protection in a new room
- Significantly lower running costs compared to fixed installations: only 4% of the air volume has to be handled
- No need special installation:
 - Fits through standard doors
 - Runs on 100W at 220 V

My special thanks go to

- Dr. med. Jent, Inselspital Bern, for pointing out the importance for the IMC's and providing the essential clinical guidance
- Dr. Lämmle and his team at CFS for flow modeling
- Dr. Feld for his instrumental guidance on acoustics
- Mr. Specht, FHNW Brugg-Windisch, for his excellence in designing the NCA Baldachin
- Mr. Grütter, G-Technology, for realizing and adapting the prototypes on the shortest notice
- Funding:
 - Swiss Federal Office for the Environment: FOEN-UTF 655.03.21
 - NTN Innovation Booster User-Centred Health Tech
 - HighTech Zentrum Aargau: Projekt 1 0.01 844.01 . 1
 - Private Sponsors: Dr.med.J. Schiltknecht, W. Johann, and the Swiss Lung Foundation.
- And to my colleagues, our scientific advisory board, our research partners, and the advisory group from several federal offices

NanoCleanAir Team and Founders

Jan Czerwinski;

BFH-TI Biel.

Dipl. Ing, Prof. Dr.

Finances, Controlling & PR

Combustion Engines and

until 2019 Professor for Internal

Exhaust Technology and Head

of the Exhaust Testing Unit of

Andreas C. R. Mayer; Dipl. Ing. Dr. med. h.c. CEO Focus on exhaust emissions. Introduction of particulate filtration in Switzerland and in inter-national retrofit projects.

Thomas Lutz; Dipl. Ing. ETH Engineering Motorenentwicklung, Einführung der Abgasanalytik an der ETH, Einführung von Partikelfiltern in Fahrzeugen in Südamerika, Iran und Israel.

Rainer Mayer; MSc BBA

Heinz Burtscher;

Research and Development

Prof. em. of the University of Applied

Sciences, work in the field of particle

measurement technology in the

emission and immission range.

Prof. Dr.

Business Development & Sales Marketing and sales in telecom and mechanical engineering, supply chain management. Involved in building two start-ups.

Scientific Advisory Board

Prof. em. Dr. Peter Gehr: Nanobiology, Lung - morphology Prof. em. Dr. Joachim Frey: Mikrobiology and biochemistry Dr. med. Otto Braendli: Pulmologist Dr. med. Jacques Schiltknecht: Internist

Scientific Research Partners

Aerosol lab: Institute for Sensors and Electronics, Univeristy of Applied Sciences, Windisch / Prof. Dr. Ernest Weingartner

Biological filter efficiency: Swiss NanoAnalytics, Adolphe Merkle Institut, Universität Fribourg. Prof. Dr. Barbara Rothen-Rutishauser

Air flow simulations: CFS, Combustion and Flow Solutions GmbH / Dr. Christian Lämmle

Jörg Mayer; Dipl. Ing. ETH, Ph.D. Legal & IP Development and licensing of platform technologies in the medical field. CTO or advisory function in several medtech start-ups.

Thank You for Your Time

"So that the Air remains to breath" www.nanocleanair.ch