

VERT Iran Workshop UFP Health Effects and Diesel Exhaust Detoxification by Particle Filters

Diesel Particle Filter Technologies

Diesel Particle Filter Technologies

Agenda

- Introduction
- Technical Concept of a Diesel Particulate Filter
- Filtration of Soot
- Soot Conversion Techniques in the Filter (Regeneration)
- Electronically Control of Filter Systems
- Summary

What does VERT® stand for?

- Non-profit organization to eliminate particles and harmful substances from internal combustion engines
- Certification of diesel particle filters with Best Available Technology (VERT® filterlist)
- International membership out of manufacturers of DPF and SCR systems, testing devices, substrate producers, chassis builders, engine manufacturers and others
- Acting as partner of Megacities to support and execute pollution reduction programs from road traffic and nonroad

VERT® is a Trade Mark

for Particle Filters based on Best Available Technology

Take Home Message

- Small particles (UFP) have to put in focus due to their health effects
- Diesel particle filtration is a well known and reliable technology since more then 20 years with more then 85 Million applications ww
- Diesel Particle Filters are systems to fulfill
 - filtration efficiency
 - Regeneration (soot burning)
 - electronically control
 - noise reduction
- Diesel particulate filters are used for first fit, option fit and retrofit
- There is no known alternative technology to reduce small particles from combustion engines to avoid heavy health effects

○ Introduction | Mobility

Introduction | Substances of Diesel Exhaust

Substances of Diesel Exhaust

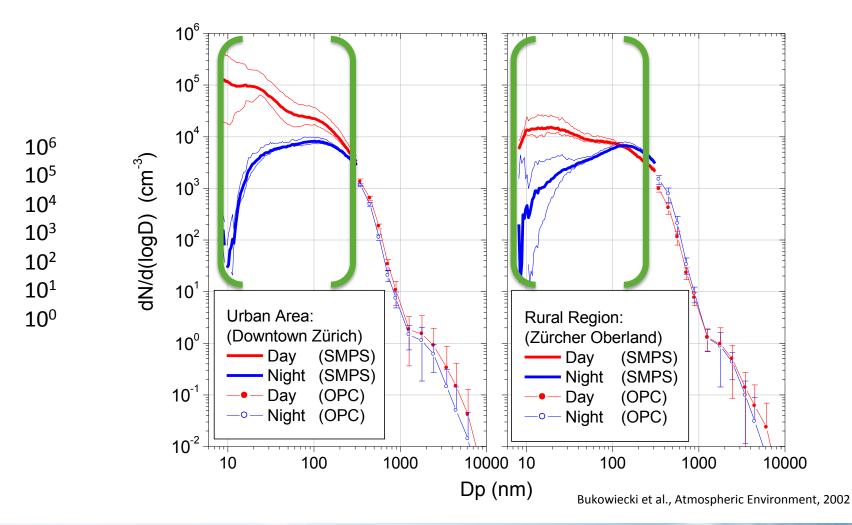
- Solid particles:
 - Soot particles
 - Ash particles
- Liquid droplets
- Gases:
 - O₂, HC, NO, NO₂
 - PAH, Nitro-PAH
- Many trace substances

Substances of Diesel Exhaust

Substances of Diesel Exhaust

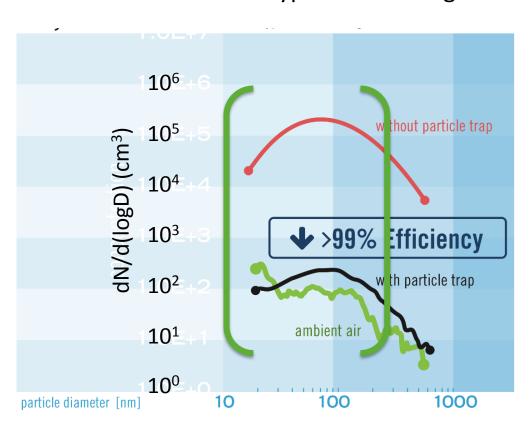
- Solid particles:
 - Soot particles
 - Ash particles
- Liquid droplets
- Gases:
 - O₂, HC, NO, NO₂
 - PAH, Nitro-PAH
- Many trace substances

- Very small 20 ... 500 nm
- High surface > 100 m²/g
- Transporting toxics persistent in organism
- Carcinogenic
- Black colour | global warming effect


Long life toxic aerosol (weeks to month)

Defined by WHO since 2012 as evidenced carcinogenic (class 1 like asbestos)

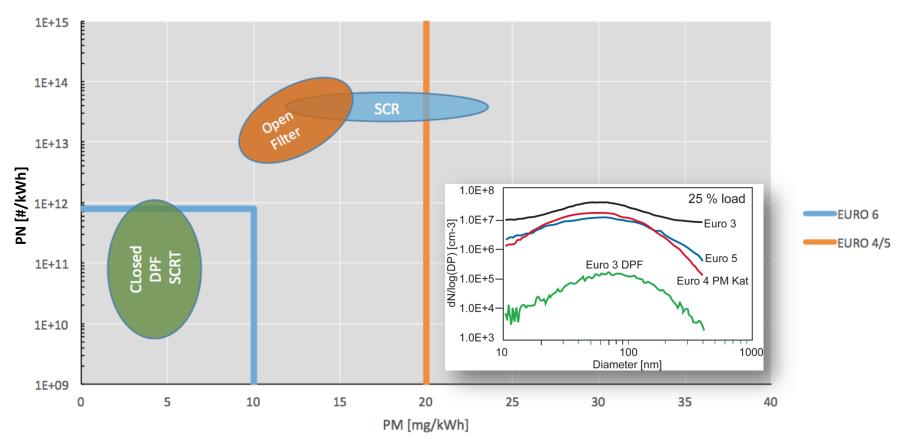
Introduction | Road Traffic Effects to Urban Air Pollution



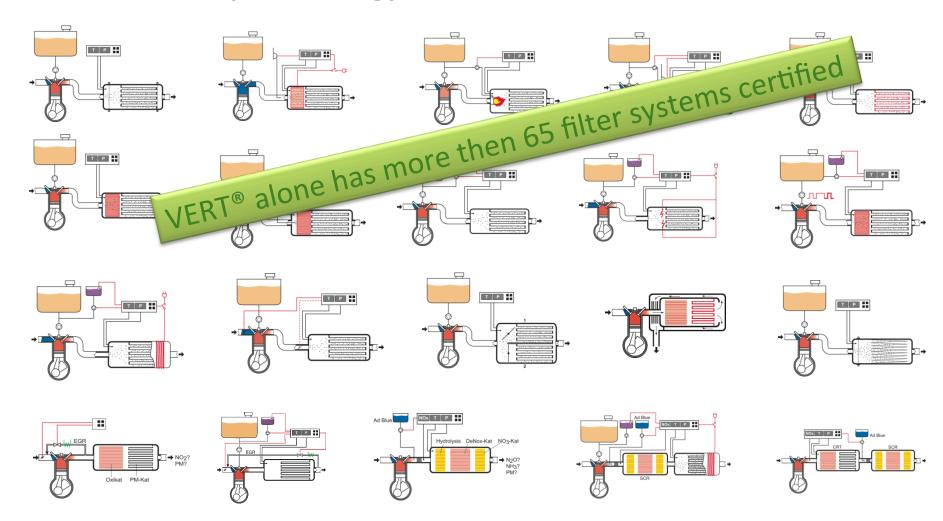
○ Introduction | Road Traffic Effects to Urban Air Pollution

Size distribution of an typical diesel engine w and w/o closed DPF

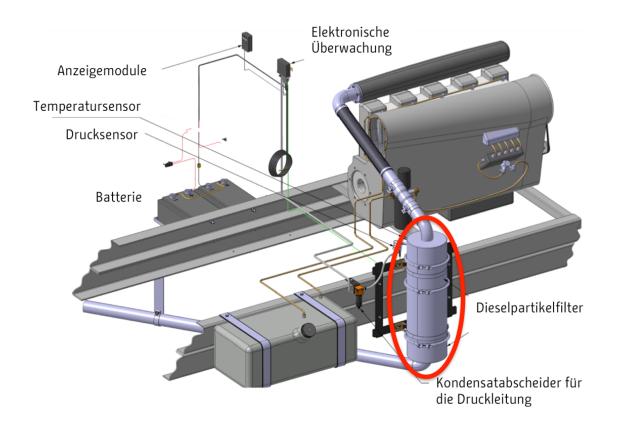
- DPF remove 99.99% of engine generated particles
- Only 0.01 % released to the environment
- DPF removes all particles



○ Introduction | Technology Assessment


Limits of different Exhaust Aftertreatment Technologies

Introduction | Technology Assessment


Diesel Particle Filter Technologies

Introduction

Agenda

- Technical Concept of a Diesel Particulate Filter
- Soot Conversion Techniques in the Filter (Regeneration)
- Electronically Control of Diesel Particulate Filter Systems
- Cleaning and Service of Diesel Particle Filters
- Summary

Particle filters substitute the original muffler

Particle filters substitute the original muffler

Particle filters substitute the original muffler

Particle filters are technical systems to fulfill 4 core functions

Filtration

filters soot and noncombustible particles like oil ash and silicates through the ceramic or sinterred metal filter element

Regeneration

Converts the soot wich has been filtered by the filter element into CO2 by burning or chemical reactions

Electronic controlling

Controls the
exhaust
temperature
backpressures
and other
parameters to
secure a reliable
functionality and
protect the
system and
engine

+

Noise reduction

The particle filter substiture the muffler and to take over the function of noise reduction

+

Particles filters are technical systems to fulfill 4 core functions

Filtration

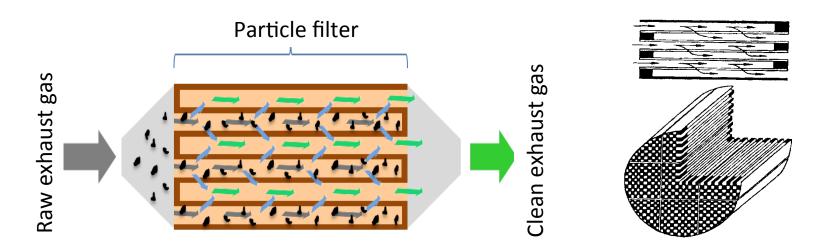
filters soot and noncombustible particles like oil ash and silicates through the ceramic or sinterred metal filter element

Regeneration

Converts the soot wich has been filtered by the filter element into CO2 by burning or chemical reactions

Electronic controlling

controls the
exhaust
temperature
backpressures
and other
parameters to
secure a reliable
functionality and
protect the
system and
engine


Noise reduction

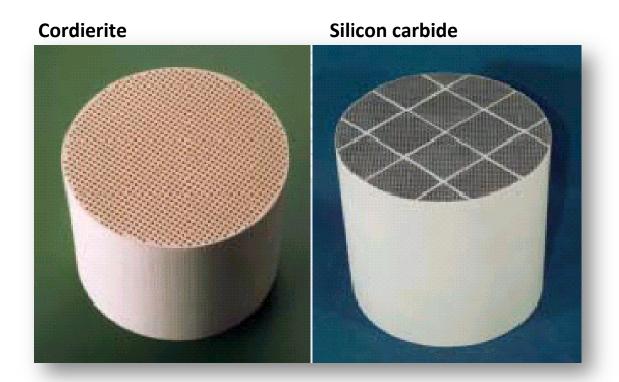
The particle filter substiture the muffler and to take over the function of noise reduction

"Closed" Filter Systems are holding > 99% of the particles back

- Channels are reciprocally closed
- Exhaust gas is forced to penetrate the porose, to air permeable, walls
- Soot particles are hold back and collected on the walls of the filter materiel

"Closed" Filter Systems are holding 99% of the particles back

Different Substrates for Particle Filters are used

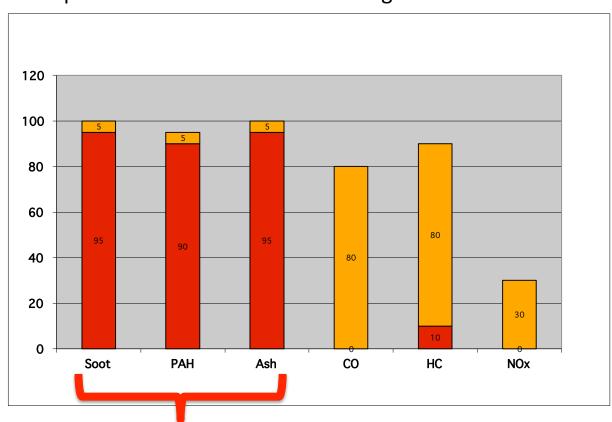

- Ceramic and sintered metal are mostly used
- Depending on application and regeneration different advantages and disadvantages
- All this substrates are closed and can filter Ultra Fine Particles (UFP)

Extruded cordierite and silicon carbide filter monoliths

Extruded cordierite and silicon carbide filter monoliths

Satelliten-Filter

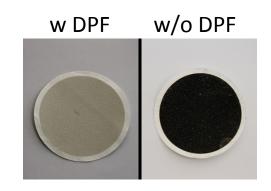
Filtertasche


Filter-Box

HDT Tagung Partikelfiltertechnologie HJS Fahrzeug GmbH & Co. KG Simon Steigert, München 2004

Diesel particle filters eliminates carcinogenic substances

carcinogenic substances


Different Filter Efficiencies -> Need for certified filters

Filter Efficiency tested under Iranian high sulfur conditions

- Configuration
 - BENZ OM 457 LA; 12 L; 299 hp, EURO 3
 - Iranian Diesel with 7.000 ppm Sulfur
 - DPF retrofitted with Fuel Borne Catalyst
 - Test cycle steady-state

	Particle mass without filtration [gr/kwh]	Particle mass with filtration [gr/kwh]	Particle number without filtration [#/kWh]	Particle number wit filtration [#/kWh]
Test Engine	0.120	0.008	3.42E+13	2.21E+11
Euro III *)	0.10	0.10		

99.35% Reduction

Particles filters are technical systems to fulfill 4 core functions

Filtration

filters soot and noncombustible particles like oil ash and silicates through the ceramic or sinterred metal filter element

Regeneration

Converts the soot wich has been filtered by the filter element into CO2 by burning or chemical reactions

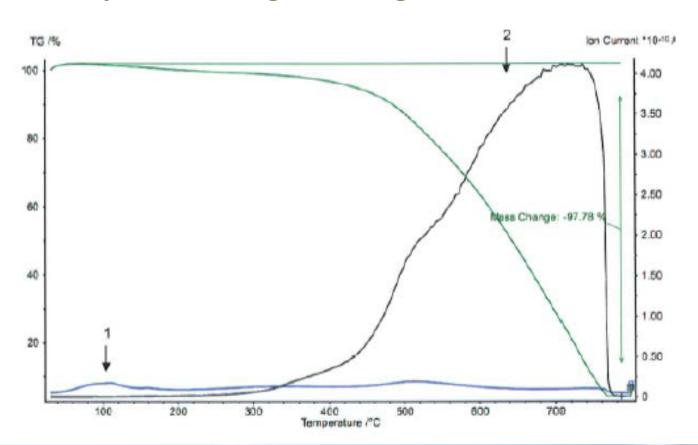
Electronic controlling

controls the
exhaust
temperature
backpressures
and other
parameters to
secure a reliable
functionality and
protect the
system and
engine

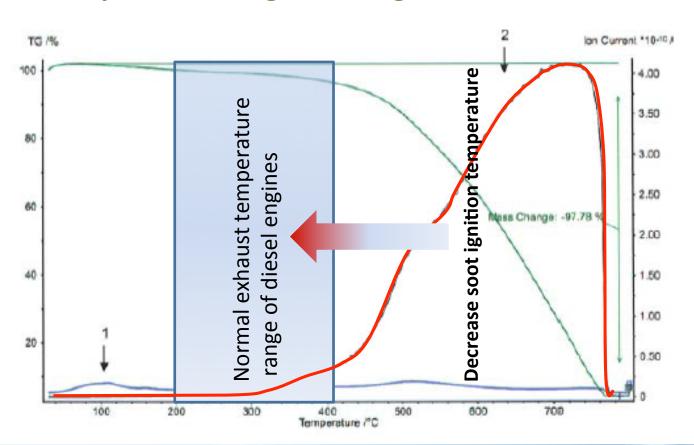
Noise reduction

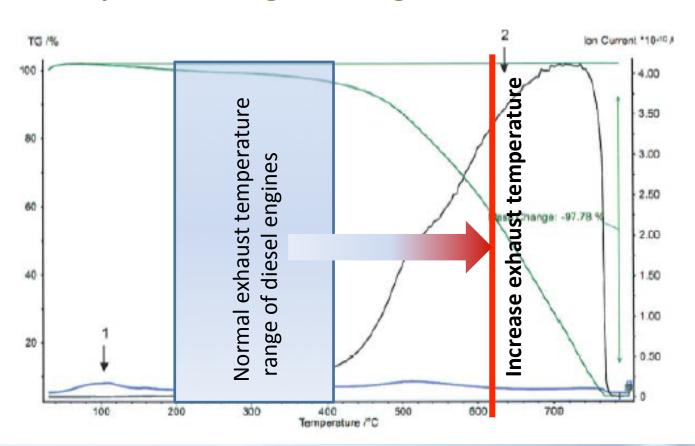
The particle filter substiture the muffler and to take over the function of noise reduction

- An efficient filter stores all soot in its cells the exhaust gas exits clean, particles eliminated
- the filter gets plugged soon (within hours)
- "Regeneration" is controlled combustion of stored soot


Challenge:

- Combustion temperature must be very high apr. 600° C
- This high temperature is practically not present in the exhaust where the filter is located!
- Need for Oxygen in exhaust gas > 6 %


Two options for regenerating the soot:


Two options for regenerating the soot:

Two options for regenerating the soot:

- Passive Systems convert the soot without external energy by using chemical or catalytic effects (Use of catalytic effects to reduce temperature for soot conversion)
- Active Systems bring external energy in the system to increase the exhaust temperature to soot burnable level. (Increase exhaust temperature)
- "Through away", "Stick on", "external regenerated" filter can be used on the engine only until the filter is full of soot. It has treated then and put back again.

Passiver Filter

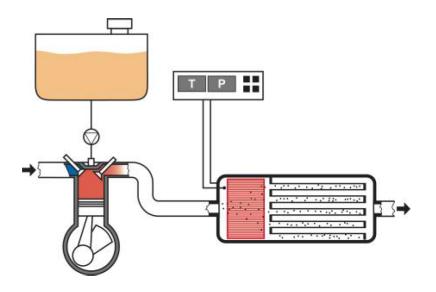
Stick on FIlter

Diesel Particle Filter Technologies needs Certification

VERT-Requirements for Best Available Technologies (total 21)

- Filtration efficiency > 97% for solid particles 20-500 nm
- No secondary toxic compounds
- Back pressure < 200 mbar</p>
- Safe and complete regeneration
- No negative impact on noise
- No additional risks (heat radiation, visibility,...)
- Filter life = engine life

VERT testing is recognized worldwide by

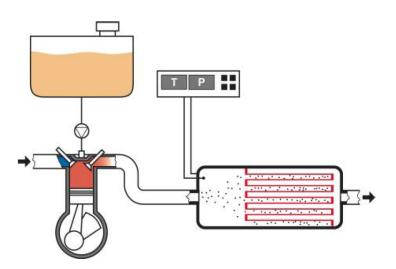

BAFU, SUVA, ASTRA, BAV – Switzerland | AUVA, Wien, Tirol – Austria | BG Bau, UBA, TRGS 554 – Germany | CARB, MSHA, NY City – USA | VROM – Netherlands | Alto Adige – Italy | Santiago de Chile | DEEP – Canada | London LEZ – UK | Denmark LEZ | Beijing – China

Regeneration Technologies (Passive)

CRT Systems | passive regenerating

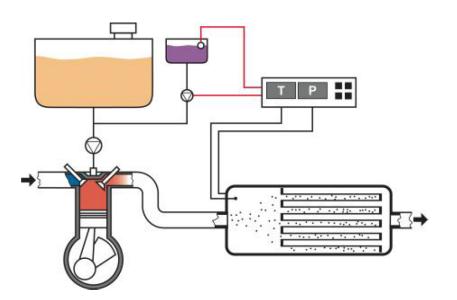
- The NO2 driven regeneration
- It is generated in the oxidation catalyst from upstream of the filter
- According to the following reaction:
 NO + ½O2 ↔ NO2
- The soot, which is being trapped in the filter is continuously oxidized by NO2, as follows:

$$NO2 + C \rightarrow NO + CO$$


- Function of regeneration is depending on temperature cycles of the vehicles
- Sensitive against high sulfur (50 ppm)

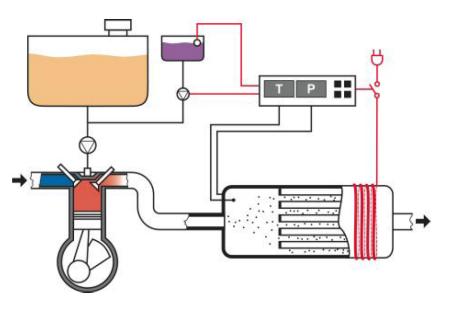
Regeneration Technologies (Passive)

Catalytic Coated Filters | passive regenerating


- Catalytic coated ceramic filter element
- Uses NO₂ and/or O₂ for the regeneration
- Function of regeneration is depending on temperature cycles of the vehicles
- Sensitive against high sulfur (> 250 ppm)
 Depending on kind of coating
- Easy to install

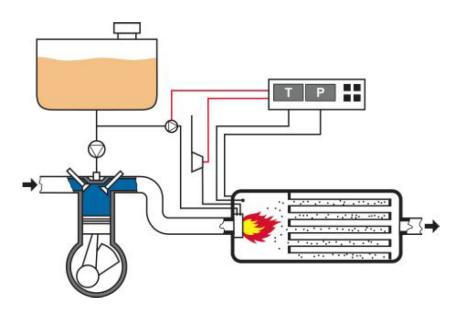
Regeneration Technologies (Passive)

FBC = Fuel Borne Catalyst | passive regenerating


- No catalytic coating, the additive is the catalyst and comes always fresh to the filter
- Need additive on the vehicle, 1 Liter is needed for 1.500 – 2.000 Liter fuel
- Reduces significantly NO₂
- Robust against high sulfur in diesel (up to 7.000 ppm tested in Tabriz)
- Function of regeneration is depending on temperature cycles of the vehicles. Short high temperature peaks are sufficient

Regeneration Technologies (Active)

FBC = Fuel Borne Catalyst with electrical ignition (SMF-AR) | active regenerating


- No catalytic coating, the additive is the catalyst and comes always fresh to the filter
- Need additive on the vehicle, 1 Liter is needed for 1.500 – 2.000 Liter fuel
- Reduces significantly NO₂
- Robust against high sulfur in diesel (up to 7.000 ppm tested in Tabriz)
- Works with every temperature profile of the vehicle

Regeneration Technologies (Active)

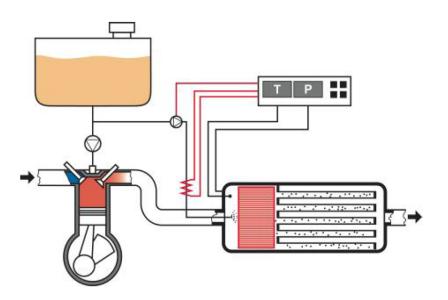
Stand Still Burner | active regenerating

Burns the soot of with a flame

Robust against high sulfur in diesel (up to 7.000 ppm tested in Tabriz)

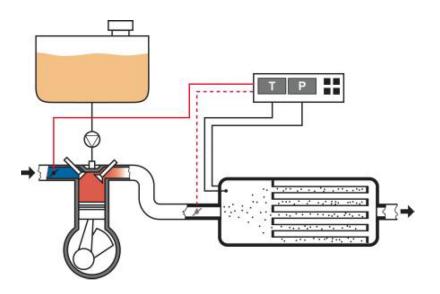
Need downtime (apr. 30 min) when the filter needs to regenerate the soot which can be aligned with driver shift change

Works with every temperature profile of the vehicle


Needs a fuel line from the vehicle to the burner

Regeneration Technologies (Active)

Catalytic Fuel Burner | active regenerating


- Burns the soot of over 600 °C by injection diesel on a catalytic converter
- Robust against sulfur up to 230 ppm in diesel
- Probably not robust against high sulfur diesel > 250 ppm
- No downtime, the burner works under normal operation
- Works with every temperature profile of the vehicle
- Needs a fuel line from the vehicle to the burner

Regeneration Technologies (Active Support Function)

Temperature Management by Throttling

- An option for passive systems is a temperature (optional)
- Exhaust temperature can be increased up to 80 °C
- Support a broader application
- Makes passive systems more independent from bus routes
- Reduces additional maintenance due to blocked passive filters

Regeneration Technologies

Technology overview

Properties
-
Sulfur resistance 50 ppm
Sulfur resistance 250 ppm
Sulfur resistance 7.000 ppm
Indipendent on temperature
profiles (driving route)
Increase fuel consumption
installation time
media for regeneration needed
Filter service needed
Robustness against high engine
raw emissions
Regulary inspection and
maintenance needed
coordination cost due to limted
routes for operation

Passive Systems			
CRT System NO2 Rgeneration	Catalytic Coated Filters Oxidative Regeneration	FBC = Fuel Borne Catalysts (Additive)	
yes	yes	yes	
uncertain 1)	yes	yes	
no	no	yes	
no	no	no	
max 2%	max 2%	max 11,5%	
half to one day	half to one day	half to one day	
no	no	additive	
apr. once a year cleaning and if the temperature profile is not o.k.	apr. once a year cleaning and if the temperature profile is not o.k.	apr. once a year cleaning and if the temperature profile is not o.k.	
low	low	medium	
yes	yes	yes	
yes	yes	yes	

Active Systems			
Stand Still Burner	Catalytic Fuel Burner	FBC plus electrical ignition SMF-AR	
yes	yes	yes	
yes	yes	yes	
yes	no	yes	
yes	yes	yes	
max. 3%	max. 3%	max. 11,5 %	
one to two days	apr. two days	apr. two days	
diesel	diesel	additive	
apr. once a year	apr. once a year	apr. once a year	
high	medium	medium	
yes	yes	yes	
no	no	no	

Technical Concept of a Diesel Particulate Filter

Particles filters are technical systems to fulfill 4 core functions

Filtration

filters soot and noncombustible particles like oil ash and silicates through the ceramic or sinterred metal filter element

Regeneration

Converts the soot wich has been filtered by the filter element into CO2 by burning or chemical reactions

Electronic controlling

controls the
exhaust
temperature
backpressures
and other
parameters to
secure a reliable
functionality and
protect the
system and
engine

+

Noise reduction

The particle filter substiture the muffler and to take over the function of noise reduction

- Regeneration of soot needs Onboard Control
- All diesel particulate filters needs electronic controlling to secure the functionality and protect the engine
- Controls minimum backpressure and temperature
- Gives Feedback to the driver and service people

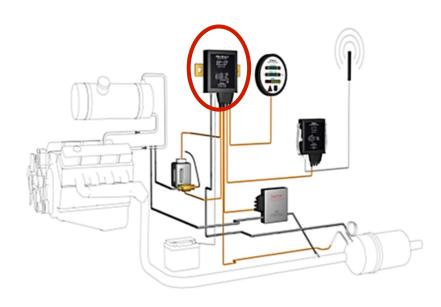
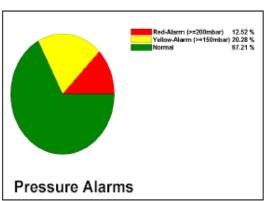
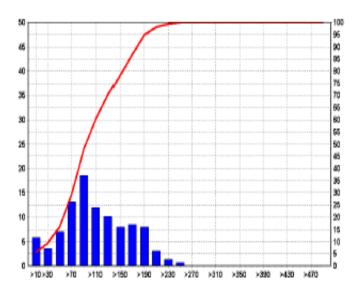
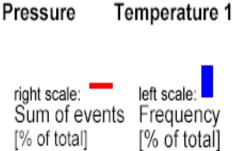
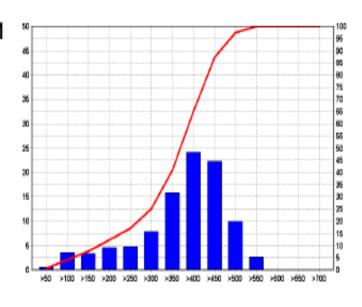



Bild: CPK Automotive GmbH & Co. KG

Temperature sensor


Backpressure sensor

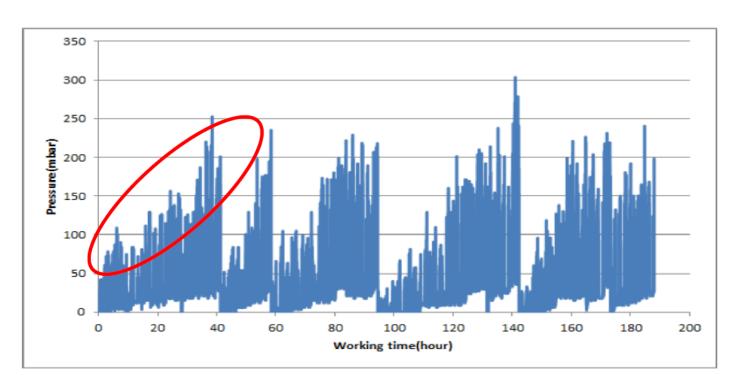

DPF Inlet Module with sensor connections



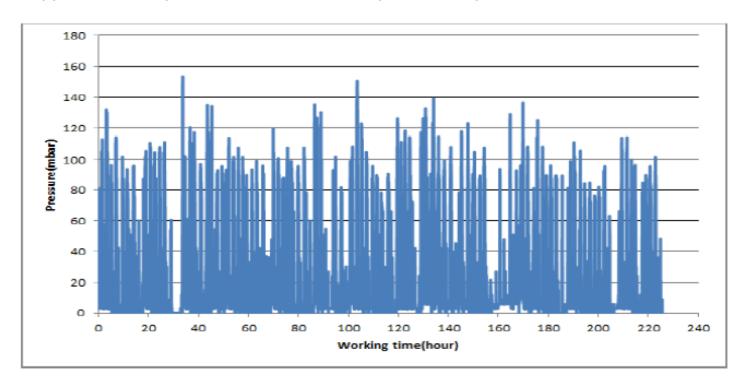
Statistical Analysis of the data

Examples for simple feedback

LED-Anzeige



Alarm type	LED-colour
Backpressure "pre alarm"	Orange flashing
To high back pressure	Rot flashing
Filter defect	Red flashing
Sensor defect	Red flashing
Additive level to low	Red flashing
Service needed	Red flashing


Typical back pressure curve of an active system

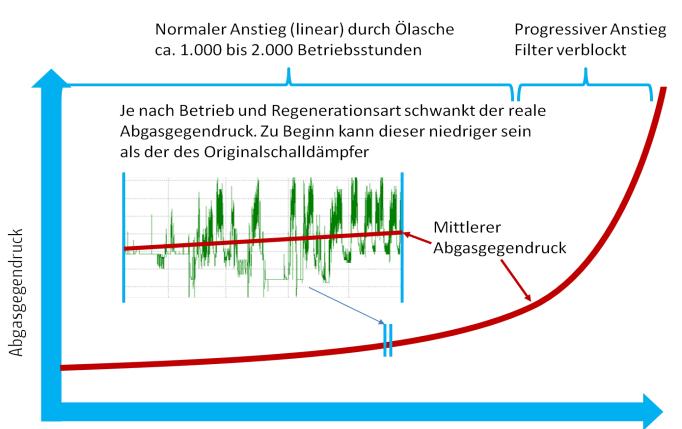
Typical back pressure curve of a passive system

Conclusion

EURO 6 values for PN can be reached with DPF, even with retrofitted EURO 3 and EURO 4 engines

Local challenges like high sulphur content in fuel can be managed with adapted technologies

Diesel emissions are Carcinogenic. Solutions to eliminate harmful and Carcinogenic substances are available and already in use.


Diesel Particle Filter Technologies

Wartung und Reinigung

Auswirkung der Laufzeit auf den Abgasgegendruck

Wartung und Reinigung

Reinigung von Partikelfiltersystemen

Filterdefekte

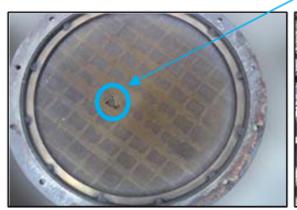


Abb. 28: Beschädigter Filter

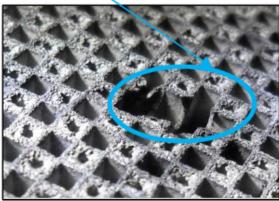


Abb. 29: Beschädigtes Substrat

Abb. 30: Gut gereinigter Filter

Wartung und Reinigung

Reinigung von Partikelfiltersystemen

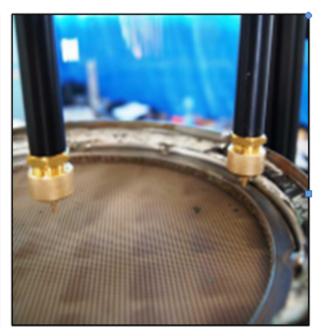


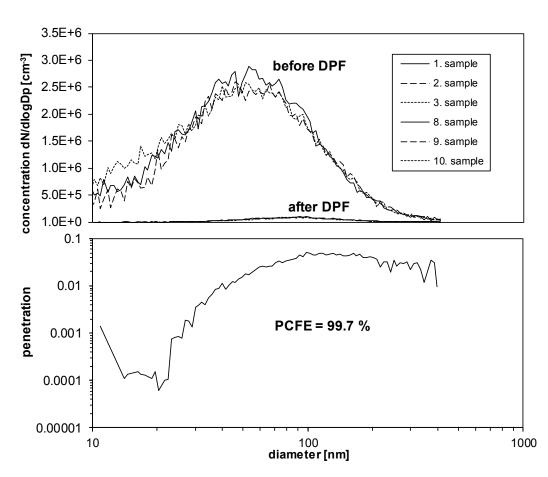
Abb. 31: Beispiel einer modernen Filterreinigungsanlage

Bilder:

Global Experience with Heavy Duty Diesel Particulate Filters

- **USA:** Construction machines in Boston "big dig", DPF for diesel engines in all metal mines, California retrofit program for in-use heavy duty onroad vehicles, since 2007 all new heavy duty with DPF New York, New Jersey; many activities in cities under local law, large funds for school busses and transit busses > 60.000 DPF
- UK: London Low Emission Zone 3 phases –total > 100,000 retrofits, DPF for construction machines in London cross rail
- Italy: DPF for LDV and DPF for construction machines in public construction in Südtirol, Low Emission Zones in Lombardia and Emilia Romana, "Decreto" for retrofit of HDV retrofits in the Milan and Turino area > 15.000 retrofits
- Netherlands: Low Emission Zones in all major cities, starting with onroad HDV, nonroad vehicles following
- Denmark: retrofit in Copenhagen, LEZ in all major cities > 4.000 retrofits
- Japan and Korea: retrofit activity started with bus and truck in Seoul and Tokyo, 2008 intensified, some are partial DPF > 150.000 retrofits
- Today 84 mil. vehicles with DPF in-use.

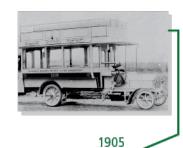
○ Introduction | Particle Reduction Efficiency - SCR versus DPF


- Vehicle
 - MAN TGS
 - 397 kW
 - 220 km
- Exhaust system
 - OEM SCR
 - DPF retrofitted
- Test parameters
 - SCR dosing activated
 - ULSD
 - Chassis dyno
 - Measurements before and after DPF

Effects on Particle Reduction Efficiency - SCR versus DPF

Source: SAE Paper 2014 -1-1569 J. Czerwinski, Y. Zimmerli/AFHB, A. Mayer/TTM, N. Heeb/ EMPA, H. Berger/ASTRA, G. D'Urbano/BAFU

○ Introduction | Mobility



First line with horsedrawn carriages

First electric tram

Use of omnibuses

1847

1881

1902

1865

First horse-drawn tram

First underground line (as elevated railway)

1929

Founding of the Berliner Verkehrs-AG company

