Statistic tools for the on-line interpretation of DPF on-board control signals

Lukas Fabrykowski (lukas@fabrykowski.com)

Friedrich Legerer

Measurement-cycle

Analysis and prediction of key values to support fleet management and engineering

Automated analysis and detection of data faults and preparation of data for further analysis and prediction

IF YOU TORTURE THE DATA LONG ENOUGH, IT WILL CONFESS.

Prof. Ronald Coase

British economist, laureate in Nobel Memorial Prize in Economic Sciences 1991

Unexpected data

Measurement

- Sensor
- On-site chip
- Data trasmission
- Off-site chip
- etc.

Filter

- Coking
- Partial regeneration
- leakage
- etc.

Increasing complexity of analysis

Data stream

- No data manipulation
- On-line
- Multiple time stamps
- Hard upper or lower bounds

1st order

- Grouping, splitting
- Immediate history
- Too short measurements
- Operation cycle Block of continuous measurements
- Upper or lower bounds Ratio of cylce

2nd order

- Statistical analysis, calculus
- Entire history
- 1st / 2nd derivative
- Variance
- Entropy / efficiency

Entropy

- 19th century: Rudolf Clausius (classical thermodynamics)
- 2nd half of 19th century: Ludwig Boltzman (statistical mechanics)
- 1948: Claude Shannon (information theory)

$$H(X) = -\sum_{i=1}^{n} P(x_i) \ln(P(x_i))$$

• Shannon-Index

Efficiency

• Maximal Entropy at uniform distribution 15th

$$H(X) = -\sum_{i=1}^{n} \frac{1}{n} \cdot \ln(1/n) = \ln(n)$$

• Normalised entropy

$$\eta(X) = \frac{H(X)}{\ln(n)}$$

Relation entropy / variance

Relation entropy / variance

Real-world measurements

12.11.2014 09:17:56 - 12.11.2014 09:30:14

9th VERT Forum

Real-world measurements

01.11.2014 19:26:28 - 01.11.2014 19:36:48

Index 9th VERT Forum

Current state and outlook

- 20 data series
- > 19 mil. data points
- Further working and faulty series as reference data
- Which predictors?
- Which characteristics?

