
Retrofitting to Real World Euro VI

Carlos Vicente Retrofit Sales Director

Eminox - 40 years of evolution in EATS !

Eminox

OEM Customers

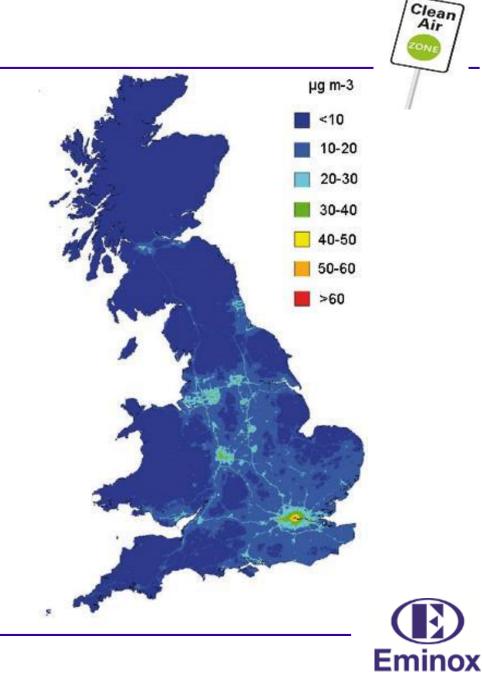
Eminox

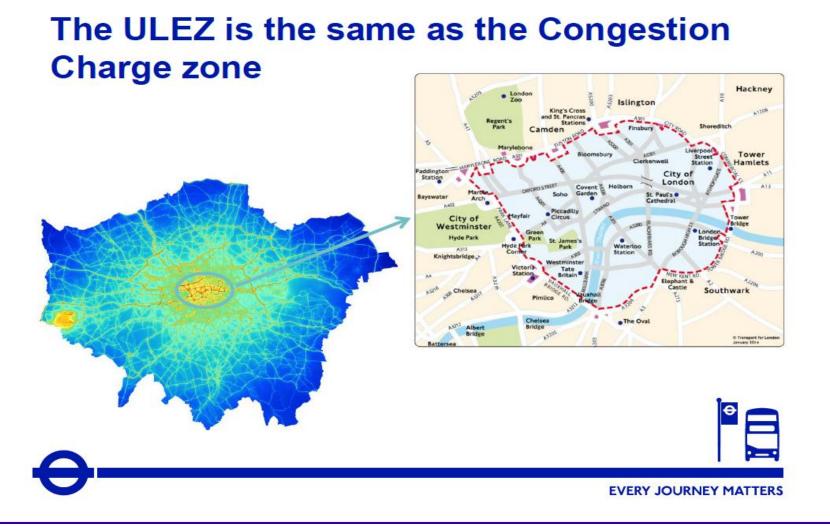
Retrofit Customers

Global Retrofit

Over 20 years in emission control 15 years' experience in SCRT®

Clean Air Zones

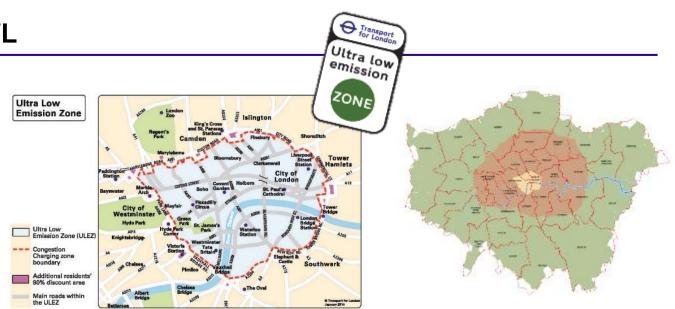

Final Air Quality Plan published July 2017


Detailed plans to be produced by 29 Local Authorities

Basildon District Council	Coventry City Council	Leeds City Council	Nottingham City Council	Southampton City Council
Bath and North East Somerset Council	Derby City Council	Manchester City Council	Rochford District Council	Stockport Metropolitan Borough Council
Birmingham City Council	Fareham Borough Council	Middlesbrough Borough Council	Rotherham Metropolitan Borough Council	Surrey Heath District Council
Bolton Metropolitan Borough Council	Gateshead Metropolitan Borough Council	New Forest District Council	Rushmoor Borough Council	Tameside Metropolitan Borough Council
Bristol City Council	Greater London Authority	Newcastle City Council	Salford Metropolitan Borough Council ⁴¹	Trafford Metropolitan Borough Council ⁴²
Bury Metropolitan Borough Council	Guildford Borough Council	North Tyneside Council	Sheffield City Council	

Draft Plans for consultation by March 2018

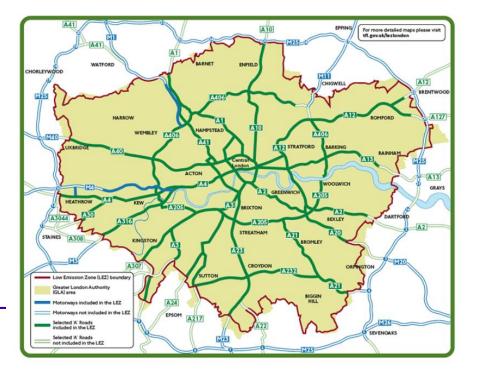
Final plans by December 2018



Eminox

London Ultra Low Emission Zone & TfL

Central London ULEZ


- Confirmed date: 8 April 2019
- Area as congestion charging zone
- £100/day £1000/day penalty

Expansion - Phase II Greater London expected

for bus, coach and truck from 26 October 2020

- TfL <u>5000 buses</u> retrofit programme Euro VI
- Vehicles retrofitted to Euro VI (CVRAS) or TfL MLTB

Clean Air Zones

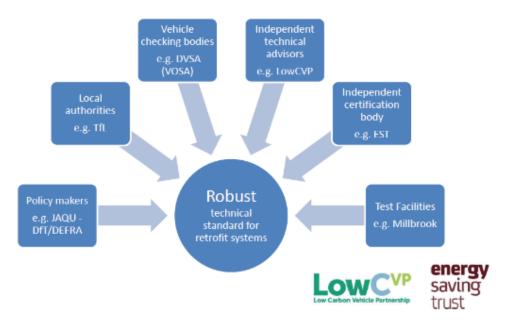
- Plan for Clean Air Zones or 'equally effective measures'
- Original 5 Clean Air Zones to be introduced by 2020
 - Birmingham
 - Leeds
 - Nottingham
 - Derby
 - Southampton
- Additional zones to be introduced by 2021
- All zones likely to focus on buses, possibly coach & other heavy duty vehicles
- Clean Vehicle Retrofit Accreditation Scheme (CVRAS) approved technologies will be compliant

Government Support for Retrofit

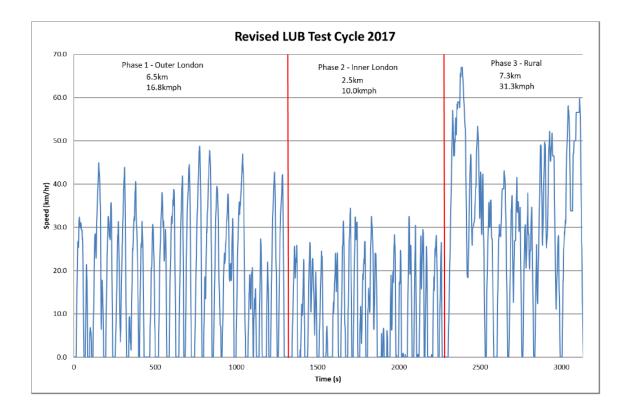
£40m Clean Bus Technology Fund

- Announced in September 2017
- Local Authorities can bid for up to £3m for local projects
- Only for Clean Vehicle Retrofit Accreditation Scheme (CVRAS) approved technologies

£220m Clean Air Fund


- For local authorities in England
- Focus on additional measures to minimise impact on local people/businesses
- With existing funding focused mainly on buses : DEFRA consulted on what support is needed for retrofit in other sectors (RCV Coach etc)
- Consultation closed 5 January 2018
 https://consult.defra.gov.uk/airquality/additional-measures/

- Approval Standard for CAZ and ULEZ in UK
- Scheme was published on 3 August
- So far only scheme fully released is for bus
 - Coach, Truck & RCV in progress
- UK approved test cycles
- Company and technology accreditation required


http://www.energysavingtrust.org.uk/business/transport/clean-vehicle-retrofit-accreditation-scheme-cvras

Same emission targets as TfL + new national drive cycle for buses

Exhaust emission param	eter	Maximum permitted limit
Primary emissions		
Mixed oxides of nitrogen	NOx	500mg/km
Nitrogen dioxide	NO ₂	100mg/km
Particulate matter (PM)	PM	10mg/km
Number of particles (PN)	PM	6 x 10 ¹¹ /km
Secondary emissions		
Nitrous oxide/methane	N ₂ O/CH ₄ (as CO ₂ e)	< 5% of CO ₂
Carbon dioxide	CO ₂	< 1% increase
Ammonia	NH ₃	10ppm average
		25ppm peak
In service		
Mixed oxides of nitrogen	NOx	

CVRAS Status – yellow tbc

Vehicle	Test cycle	Test Limits	Service Limits	System Approvals	Vehicle approvals	Registered database	
Bus – 25% laden	Dyno RLUB Confirmed	500mg NOx 5% CO2e 100 mg NO2	>80% incl average daily conversion	Eminox Green Urban ?			
Coach — 50% laden (100% pax)	Dyno LUC Proposed	500mg NOx 5% CO2e 100 mg NO2	Monitoring or OBD	Baumot Eminox Do we want to ma	<mark>ke Coach (</mark>	and Truck	
Truck — N2N3 50% laden Or dyno max	Dyno LUT Track LHAC	500mg NOx 5% CO2e 100 mg NO2	OBD	any different limits to Bus or keep all the same at 5% CO2e and 100mg NO2?			
Van – N1 50% laden? Or ref weight	Dyno LUT or WLTP	250mg NOx 3% CO2e 100 mg NO2	Monitoring or OBD	Van and Taxi, can argue that WLTP cycle is most appropriate for Euro 6 equivalence, however we have real- world cycles for each?			
Taxi — 1 pass or ref weight	Dyno PCO CENEX or WLTP	250mg NOx 3% CO2e 100 mg NO2	Ŭ	PCO is worst case higher NOx Amminex Autogas Ipg	and may (give	

Eminox – A Hexadex Company

Buses Vehicle Emission Testing Procedure

- Test procedure Clean Vehicle Retrofit Accreditation Scheme/TfL Bus test
- Real world cycle Revised LowCVP UK Bus (RLUB) Cycle. (Rural at end)
- Test to be undertaken at a vehicle laboratory using a chassis dynamometer
- Test conditions: 50% of seated passenger load (or 25% of total)

Measurements: NO, NO2, NOx, N2O, CO2, CH4, PM, PN, THC plus NH3

Coach Vehicle Emission Testing Procedure

- Test procedure Clean Vehicle Retrofit Accreditation Scheme
- Real world cycle LowCVP UK Coach (LUC) Cycle.
 Outer London Bus, + Rural Bus, + Motorway

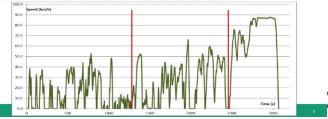
Connect

Influence

Low Carbon Vehicle Partnership

Collaborate

- Test to be undertaken at a vehicle laboratory using a chassis dynamometer
- Test conditions: 50% of GVW load (or 100% of total passengers) up to max Dyno inertia
- Measurements: NO, NO2, NOx, N2O, CO2, CH4, PM, PN, THC plus NH3


Trucks Vehicle Emission Testing Procedure

Low Certer Vehicle Partnenhip

LowCVP Connect Collaborate

LowCVP Connect Collaborate

- Test procedure Clean Vehicle Retrofit Accreditation Scheme
- Real world cycle LowCVP UK Truck (LUT) Cycle.
 Abbreviated TfL AM urban peak, + WHVC (WHVC urban and rural combined into single phase)
- Test to be undertaken at a vehicle laboratory using a chassis dynamometer
- Test conditions: 50% of payload up to max Dyno inertia Track PEMS Test additionally for Large HGV exceeding Dyno capability
- Measurements: NO, NO2, NOx, N2O, CO2, CH4, PM, PN, THC plus NH3

Clean Vehicle Retrofit Accreditation Scheme

- Chassis dyno testing at Millbrook required by engine type
- In service validation via telemetry to confirm > 80% reduction

Exhaust Emission Parameter		Limits	Reduction performance
Primary emissions Mixed oxides of nitrogen Nitrogen dioxide Particulate Matter (mass) Particulate Matter (count)	NO _x NO ₂ PM PN	500mg/km 100mg/km 20mg (or 10mg) /km 6x10 ¹¹ /km	>80% reduction
Secondary Emissions Nitrous oxide/Methane Carbon dioxide Ammonia	N ₂ O/CH ₄ as CO ₂ e CO ₂ NH ₃	< <mark>5% (or 3%)</mark> of CO ₂ < 1% increase 10ppm 25ppm	Average Peak
			P saving

trust

x Abatement Summary Sheet - MLTB Cycle Eminox Ltd Sustomer Address: Miller Road, Corringham Road Industrial Estate, Gainsborough, Lincoinshire, DN21 1QB TFL development and testing Test Purpose: Vehicle No: LJ13 FDP Vehicle Type: Volvo B5H Engine: Euro V Diesel Hybrid Transmission: Auto Fuel Type: Pump Diesel Fuel Batch No: N/A

Millbrook Project No: PT0120-018-01

Test No. 6	282, 6285, 6286	Engine Summary						
Date	17/02/2017	NOx	NO ₂	N ₂ O	CH4	co,**	CO 2 +9	NH,
	Units:	g/km	g/km	g/km	g/km	g/km	g/km	ppm (max)
	Analyser:	MODAL	MODAL	FTIR (Eng)	FTIR (Eng)	BAG	Calculated	FTIR (Eng)
Phase 1	Outer London	11.895	1.369	N/A	N/A	919.3	0.00	N/A
Phase 2	Inner London	15.546	2.251	N/A	N/A	1223.3	0.00	N/A
Com	bined result	12.908	1.614	N/A	N/A	1003.6	0.00	N/A

Test No. 6	282, 6285, 6286	Tailpipe Summary						
Date	17/02/2017	NOx	NO ₂	N ₂ O	CH4	CO ₂	CO 2 eq	NH 3
	Units:	g/km	g/km	g/km	g/km	g/km	g/km	ppm (max)
	Analyser:	MODAL	FTIR	FTIR (Tall)	FTIR (Tall)	MODAL	Calculated	FTIR (Tall)
Phase 1	Outer London	0.240	0.030	0.102	0.000	916.5	30.4	8.70
Phase 2	Inner London	0.473	0.055	0.123	0.000	1168.3	36.6	4.14
Com	bined result	0.305	0.037	0.108	0.000	986.3	32.1	8.70
Chang	e vs Baseline	-97.6%	-97.7%			-1.7%		Pass

			Targets			
	NOx	NO ₂		CO2	CO 2 +9	NH 3
Units:	g/km	g/km		g/km	g/km	ppm (Avg)
Analyser.	BAG	FTIR		MODAL	Calculated	FTIR
Target	0.5g/km	0.1g/km		Within +1% of Baseline result (+2% accuracy)	Less than 5% of total CO2 emissions	10ppm or lower
Relative Limit	0.500	0.10		1033.7	5%	10.0
Combined result	0.336	0.04		986.3	3.15%	3.0
	67%	37%		95.4%		30%
Pass/Fall	Pass	Pass		Pass	Pass	Pass

Baseline CO2 Result taken from ML02016265, ML02016266, ML02016267. Three test conducted using same calibration, not performed consecutively. Based on Millbrook's in house validation of CO2 <=2% these three test results result in a failure on repeatability due to CO2 repeatability of 3.45%

CO2 equivalence factors:	CO2:1 - N2O:298 - CH4:2	· · · · · · · · · · · · · · · · · · ·	
Compiling Engineer:	DATE: 20/02/2017	Approving Engineer:	DATE: 21/02/2017

MILLBROOK

DYNAMOMETER SETTINGS

14,632 kg

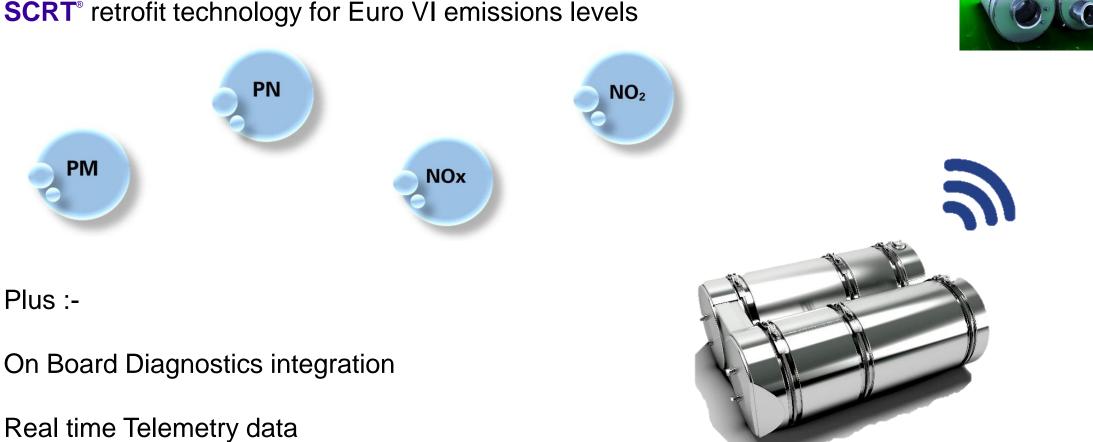
555.93 N

-7.9750 N/kmh

0.41900 N/kmh *

-0.0019520 N/kmh*

NERTIA

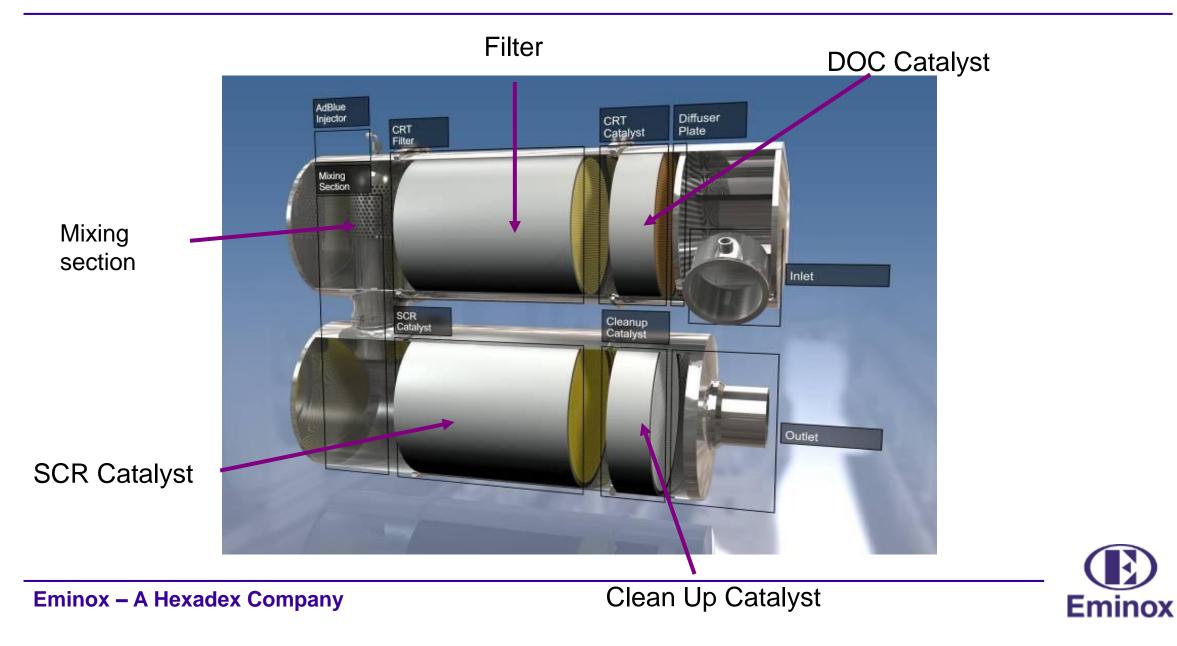

E*

E1

F?

F

Retrofit


SCRT[®] retrofit technology for Euro VI emissions levels

CRT and SCRT are registered trademarks of Johnson Matthey plc

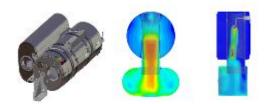
SCRT[®] System Schematic

Eminox SCRT[®] system development process:-

Each system variant needs to be :-

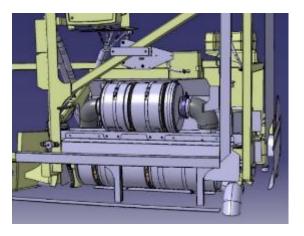
- Designed
- Optimised
- Tested
- Proof fitted
- Field Trials

Prior to volume supply

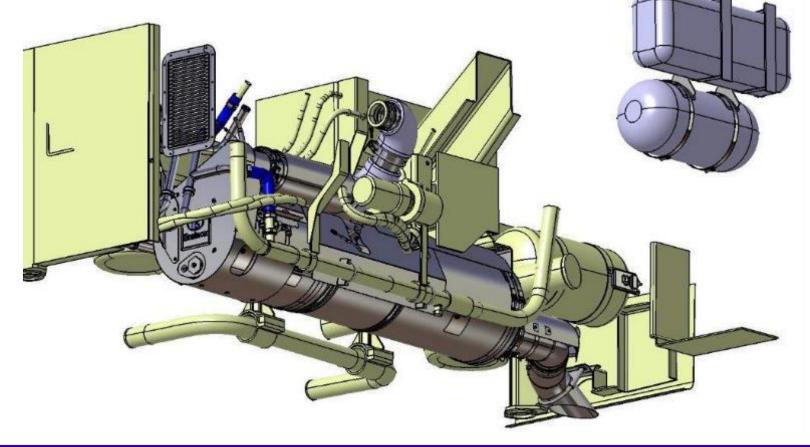

SCRT[®] System Overview - Development process

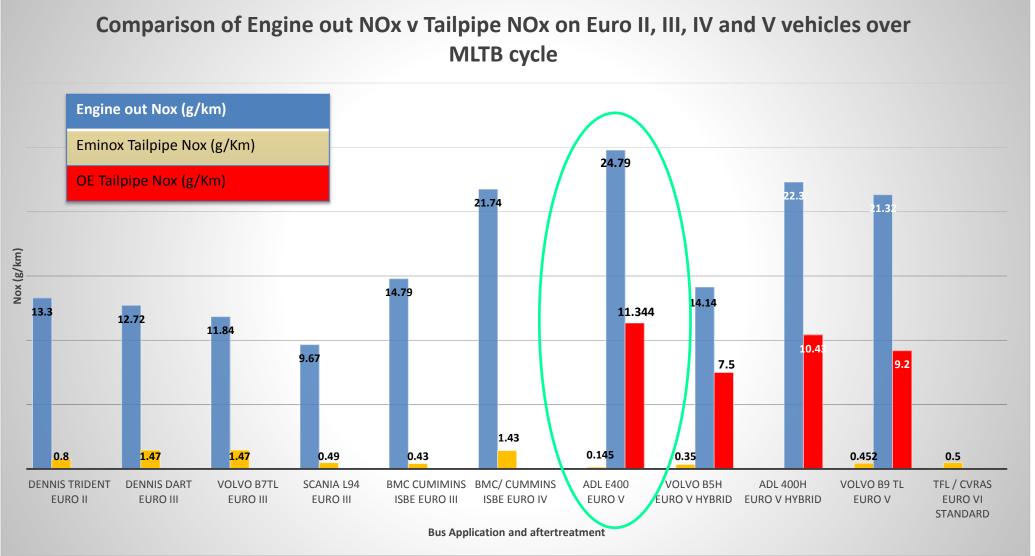
We utilize 3D Laser scenning technology to make a model of the bus chassis

SCRT^o System Overview - Development process


We use <u>CFD</u> to model velocity, urea injection and mixing prior to series production

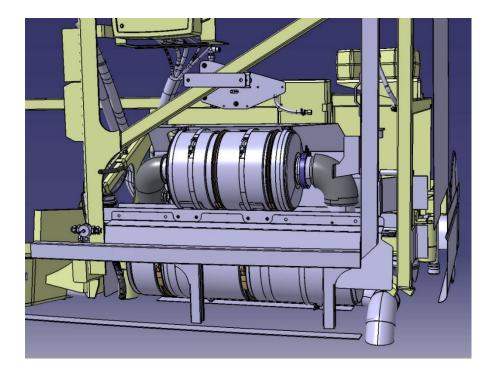
Clean Vehicle Technology





- Eu3 NOx output 11g/km
- Eu4/5 NOx output 24.79/km

Eminox Retrofit SCRT Emissions Improvements - 99.5% reduction


SCRT Euro V to IV = validated at Millbrook

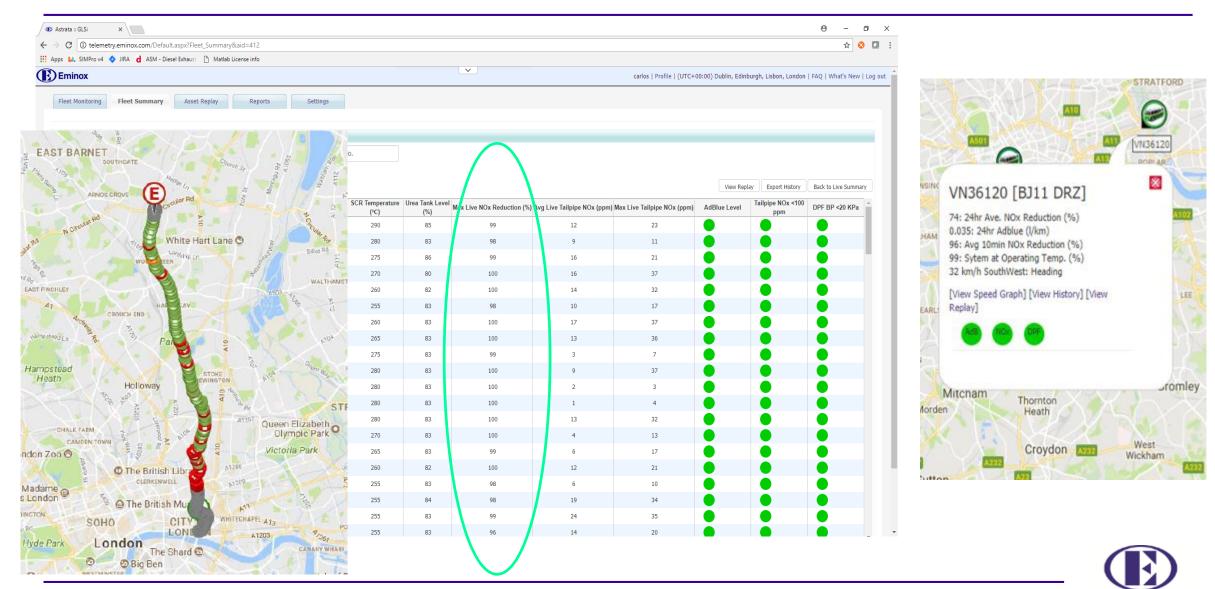
						MI	LLBRO	OK
TfL N	Ox Abatem	ent Sum	mary She	et - MLTB	Cycle			
Custome	r:	Eminox Lto	1					
Custome	r Address:	Miller Road,	Corringham	Road Industri	al Estate, Gair	nsborough, L	incolnshire, D	N21 1QB
Test Purp	0000.		batement T					
Vehicle N		YX12 FPE	patement n	esung				
Vehicle T		ADL E400				DVNA	MOMETER SET	TTINGS
Engine:	ypc.		V to Euro VI	retrofit		INERTIA	14403	
Transmis	sion.	Auto	10201011	i curoni		F°	88.97	
Fuel Type		Diesel				- F*	0.3610	
Fuel Bate		N/A				F ^a	0.38530	
	Project No:	PT0120-020-	-01			F*	-0.0020330	
Test No. 6	539, 6540, 6541			Fr	igine Summa	arv		
Date	05/06/2017	NOx	NO 2	N20	CH₄	CO2.	CO _{2 eq}	NH 3
	Units	g/km	g/km	g/km	g/km	g/km	g/km	ppm (max)
	Analyser:	MODAL	MODAL	FTIR (Eng)	FTIR (Eng)	BAG	Calculated	FTIR (Eng)
Phase 1	Outer London	22.630	1 749	N/A	N/A	1124.2	0.0	N/A
Phase 2	Inner London	30,366	3.476	N/A	N/A	1538.8	0.0	N/A
Comb	pined result	4.791	2.232	N/A	N/A	1239.5	0.0	N/A
Test No. 6	539, 6540, 6541			Ta	ilpipe Summ	ary		
Date	05/06/2017	NOx	NO 2	N ₂ O	CH 4	CO 2	CO _{2 eq}	NH 3
	Unit	g/km	g/km	g/km	g/km	g/km	g/km	ppm (max)
	Analyse	MODAL	FTIR(Tail)	F TIR (Tail)	FTIR (Tail)	BAG	Calculated	FTIR (Tail)
Phase 1	Outer London	0.117	0.012	0.240	0.000	1111.1	71.6	7.34
Phase 2	Inner London	0.217	0.007	0.198	0.000	1468.3	59.2	6.67
	oined result e vs Baseline	0.145	0.010	0.229	0.000	1210.9 -2.3%	68.2	8.28 Pass
Criange	e vs baseline	-88.476	-88.0 %	y		-2.3 %		Fdaa
					Targets			
		Nox	NO 2	PM	PN	CO 2	CO 2 eq **	NH 3
	Units	g/km	g/km	g/km	Pn/km	g/km	g/km	ppm (Avg)
	Analyser:	BAG	FTIR(Tail)	Filter Weight	PMP	BAG Within +1%	Calculated	FTIR
	Target	0.5g/km	0.1g/km	0.01g/km	6.00E+11/km	of Baseline result (+2% accuracy)	Less than 5% of total CO2 emissions	10ppm or lower
	Relative Limit	0.5	0.1	0.0	6.00E+11	1276.7	5%	10.0
Combined	result	0.165	0.010	0.0063	4.62E+11	1210.9	5.33%	3.11
		33%	10%	63%	77%	5.2%		31%
Pass/Fail		Pass	Pass	Pass	Pass	Pass	Fail	Pass
Candidat	e CO ₂ results t e tests are - M ssion on CO ₂	AL02016539	9, ML02016	540 & ML02	016541, con	ducted on 5)
CO 2 equi	ivalence factor	s: CO2:1	- N20:2	98 - CH4 :	25,			
		Wie	DATE: 05/06		Approving Eng	incor	Denis	DATE: 07/06/201
piling Engir	leer.	Contra Co	DATE. 00/00	12011	Mpproving Eng	meer.		DATE. 07/00/20

Test No. 6	539, 6540, 6541			Ta	ilpipe Summ	ary		
Date	05/06/2017	NOx	NO 2	N ₂ O	CH₄	CO 2	CO _{2 eq}	NH 3
	Units:	g/km	g/km	g/km	g/km	g/km	g/km	ppm (max)
	Analyser	MODAL	FTIR(Tail)	FTIR (Tail)	FTIR (Tail)	BAG	Calculated	FTIR (Tail)
Phase 1	Outer London	0.117	0.012	0.240	0.000	1111.1	71.6	7.34
Phase 2	Inner London	0.217	0.007	0.198	0.000	1468.3	59.2	6.67
Com	bined result	0.145	0.010	0.229	0.000	1210.9	68.2	8.28
Change	e vs Baseline	-99.4%	-99.5%			-2.3%		Pass

Volvo B5 Hybrid - Challenging inner city stop / start duty cycles

Euro 5 Hybrid bus – Test result over London MLTB Cycle = 97.7% NOx & NO2 reduction

- On board diagnostic integration for Euro V (De-rate)
- Real time monitoring of system performance


- Maintenance alerts for operators
- 80% in service performance is a CVRAS requirement

Validated in service via Telemetry....

Eminox

- Unique Ammonia dosing systems that can operate in low climate or exhaust gas temperatures
- Collaboration for the Scandinavia market
- Lowest results ever recorded at Millbrook from Retrofit SCR technology
- UK co-operation was launched at Coach & Bus UK in October to target new market sectors
- Suited for challenging duty cycles such as RCVs and Non Road Equipment

- Announcing today at the VERT Forum
 New partnership to help reduce diesel emissions in Germany!
- PURItech of Germany + Eminox Limited Collaboration to supply retrofit Euro VI solutions for the German Market
- 28 air quality regions & more than 60 municipalities across Germany, need to take action to reduce pollution.
- €150m, as part of the €1bn funding programme Clean air 2017-2020, to upgrade city buses using retrofit technology
- Again system will need to comply with Euro VI emission standards and reduce NO2 emissions accordingly.

Working Together for **Cleaner Air** The starke Allianz für **Saubere Luft**

Eminox Retrofit solutions

• Over 99% reduction of pollutant emissions is possible

- Upgrades Euro III IV & V vehicles to Euro VI emissions levels
- Proven in real world tests, supported by in service telematics
- Upgrade around 15 buses for the cost of one new bus !

Questions ?

carlos.vicente@eminox.com

