

9th VERT Forum 2018

Upgrading EU V City Busses towards EU VI Emissions under Real Driving Conditions

Klaus Schrewe – March, 15th 2018 - Dübendorf, CH

Content – Upgrading EU V City Busses towards EU VI Emissions under Real Driving Conditions

	Thing Contained to
1	HJS DeNO _X Technologies for City Busses
2	Results acc. London Clean Air Action Plan / TfL
3	German City Bus Retrofit Program
	General Conditions
	Initial Results
4	Conclusion / Outlook

1	HJS DeNO _X Technologies for City Busses				
2	Results acc. London Clean Air Action Plan / TfL				
3	German City Bus Retrofit Program				
	General Conditions				
	Initial Results				
4	Conclusion / Outlook				

HJS DeNO_x Technologies for City Busses – Bus / Engine Types

Bus Type

e.g. MAN A23 articulated

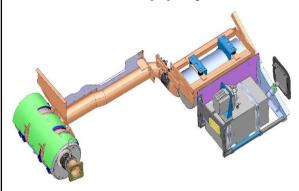
e.g. ADL Trident Enviro 400 H

Engines / EGT

Engines:

Displacement: 6,5 L – 10,5 L Power: 162 kW - 265 kW Emission class: EU V / EEV

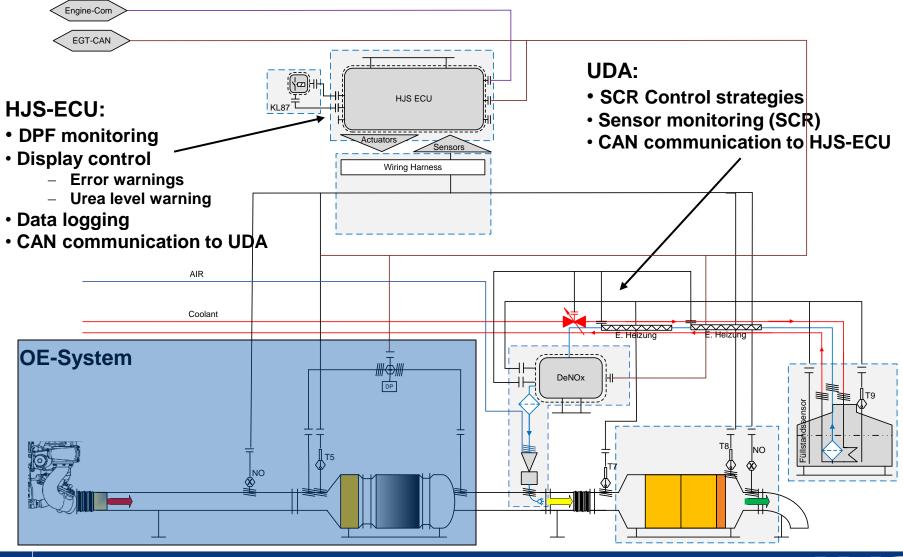
Serial EGT: EGR + DOC + DPF



Displacement: 4,5 L – 12,0 L Power: 132 kW - 265 kW Emission class: EU V / EEV

Serial EGT: SCR(T)

EGT Upgrade ⇒ **EU VI**


Autarcic SCR(T)-System

Integrated SCR(T)-System

Autarcic SCRT® – System Overview

Integrated SCRT® – System Overview

Components of the OE EGT system maintain in the bus

- AdBlue Tank
- AdBlue Dosing System (if applicable)
- NO_x sensor(s)
- Temperture sensor(s)

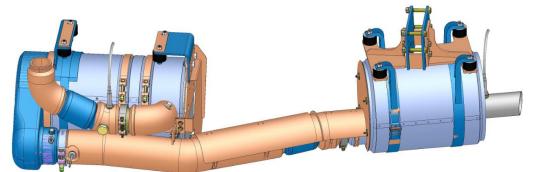
HJS ACU control unit

- Increase quantity of urea injection to new target level
- (Max quantity of OE-ECM or HJS-ACU will be injected)

Original Engine Control Unit

Feedback of status of dosing pump via CAN-Bus

Original Dosing system



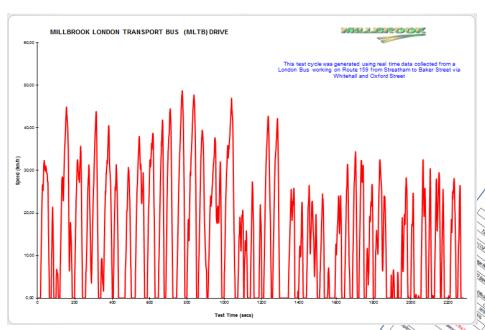
Integrated SCRT® – System Description

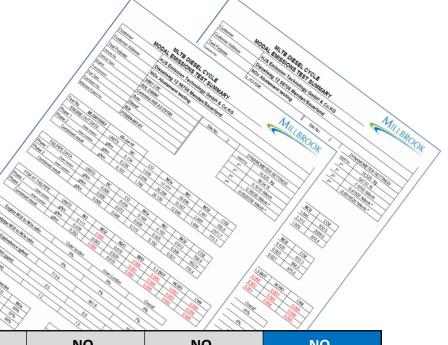
Applied Technology

Hardware:

- ACU as basis for functional and diagnosis requirements
- Latest generation of VWT-catalysts to achieve very high NO_X-reduction
- DOC; adaption of coating: NO₂ < 50 % (trade off filter regeneration vs. NO_X reduction)
- Latest generation ASC to avoid formation of N₂O
- Wall flow filter (Cordierite; SMF)
- GSM capable data logger

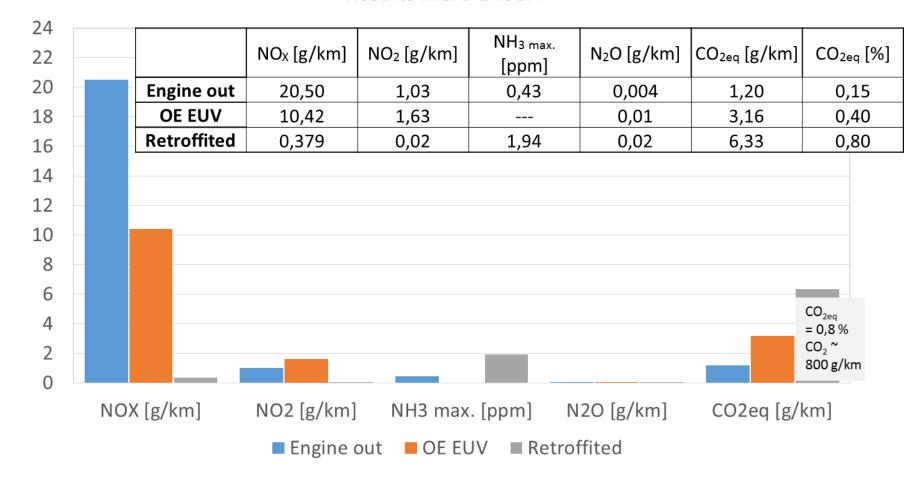
Applied Technology Software:


- ACU as CAN Gateway: Use of vehicle infrastructure possible.
 - Dosing system of vehicle (Cummins only)
 - Temperature- and NO_X-Sensors of vehicle continuously used
 - AdBlue level display of vehicle continuously used
- ACU as interface to vehicle OBD;
 - · Derate-functionality of vehicle remains
 - Function carry over of original OBD
- ACU dosing strategies to fulfill TfL emission demands comparable EU VI
- Connection of Remote Monitoring to ACU
- Integration CRT and SCR in one control unit



1	HJS DeNOX Technologies for City Busses
2	Results acc. London Clean Air Action Plan / TfL
3	German City Bus Retrofit Program
	General Conditions
	Initial Results
4	Conclusion / Outlook

Results MLTB Cycle / TfL – Cycle and HJS Results



Vehicle	Engine	Standard	Cycle	NO _x orginal [g/km]	NO _X Retrofit [g/km]	NO _X Reduction
Enviro 400	ISBe 4,5 H	EURO V	MLTB	10,42	0,379	96%
Volvo	B5H	EURO V	MLTB	7,45	0,349	95%
Enviro 400	ISBe 6,7	EURO V	MLTB	11,34	0,08	99%
Enviro 200	ISBe 4,5	EURO V	MLTB	8,63	0,265	97%
Volvo B9	В9	EURO V	MLTB	9,21	0,197	98%

Results MLTB Cycle / TfL – E400 H Cummins in Detail

Results MLTB E400H

1	HJS DeNOX Technologies for City Busses
2	Results acc. London Clean Air Action Plan / TfL
3	German City Bus Retrofit Program
	General Conditions
	Initial Results
4	Conclusion / Outlook

German City Bus Retrofit Program – Approach IUC Testing EU VI

Test according City Bus Cycle Euro VI (595/2009, 582/2011, 2016/1718)

- 70% inner city, 30 % rural (time based, starting in city)
- Mean velocity city: 15 30 km/h, mean velocity rural 45 70 km/h
- Payload 50% 60%
- Cycle duration approx. 2,5 h (acc. 4 7 x WHTC (30 min) cycle work)

Targets for NO_X reduction

Reduction of NO_X in average by approx. 70% in relation to EU V / EEV emission level at IUC testing into area of EU VI IUC results:

10 km/h	15 km/h	20 km/h	25 km/h	30 km/h
7,5 g/km	5,0 g/km	4,0 g/km	3,0 g/km	2,5 g/km

 After discussion with NGOs and Association of German Transport Companies (VDV) conditions for German City Bus Retrofit Program were significantly tightened!

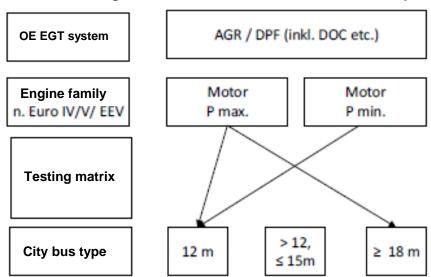
German City Bus Retrofit Program – General Conditions

Test Cycle (more severe than EU VI IUC)

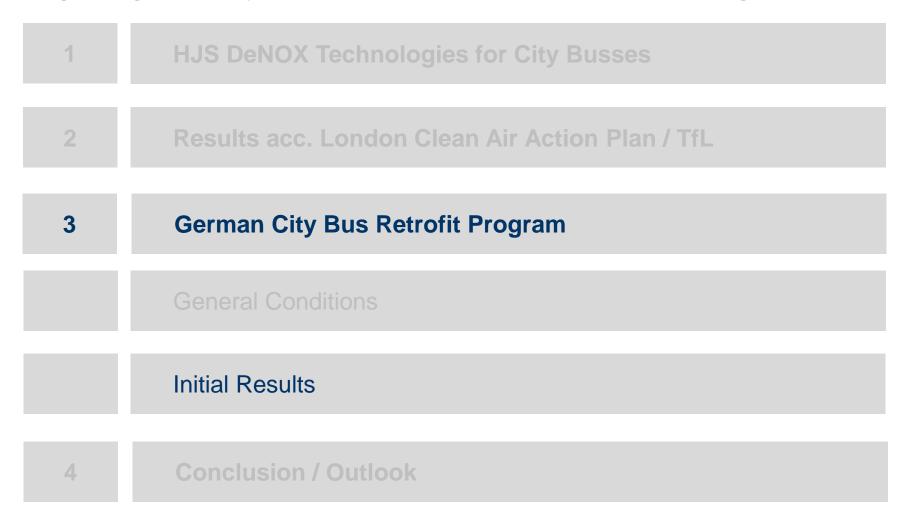
- Measuring runs under real driving conditions.
- 3 consecutive test runs, each individual composed of 125 min [± 5min.] representative for local public transport, including stops. The engine of the vehicle is switched off for 15 minutes between the measuring runs.
- Average speed of each measuring run must be between 10 km/h and 30 km/h. At stops doors to be opened for 15 seconds.
- Vehicle payload has to be 30 % of the maximum vehicle payload
- Evaluation of the data beginning if coolant temperature reaches 343 K (70 °C) for the first time or at the latest 15 minutes after engine starting

Assessment criteria for NO_X reduction systems

- Full flow DPF mandatory (Annex XXVII, FAD, VERT, R.132)
- The retrofitted NO_X reduction system must have a reduction rate of at least 85% based on the nitrogen oxide emissions (NO_X) raw emissions of the vehicle at ambient temperature $\geq -7^{\circ}C$.
- Route-related NO_X emissions in g/km in relation to the respective speed classes (± 2,5km/h) shall be in the area of EU VI IUC results and less than:


10 km/h	15 km/h	20 km/h	25 km/h	30 km/h
7,5 g/km	5,0 g/km	4,0 g/km	3,0 g/km	2,5 g/km

German City Bus Retrofit Program – Certification Procedure


Test families / groups for certification

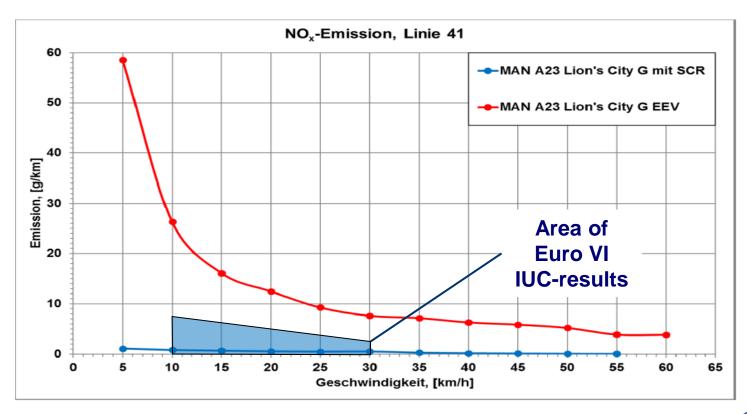
- Groups for emission class EU III EU IV EU V / EEV
- Groups according OE EGT System
- Min./max. Engine Performance and min./max. city bus size to be covered

- => One family can be covered with approx. 3 city bus test runs with two channel PEMS
- OBD / NC / warning and inducement systems existing for the serial system must be maintained without restriction in terms of their functionality and must be displayed in the same way.
- Emission compliance for 200.000 km or 4 years (with a DF of 1,15)

German City Bus Retrofit Program – Initial Results

SWO OSNABRÜCK-REALEMISSIONSMESSUNG

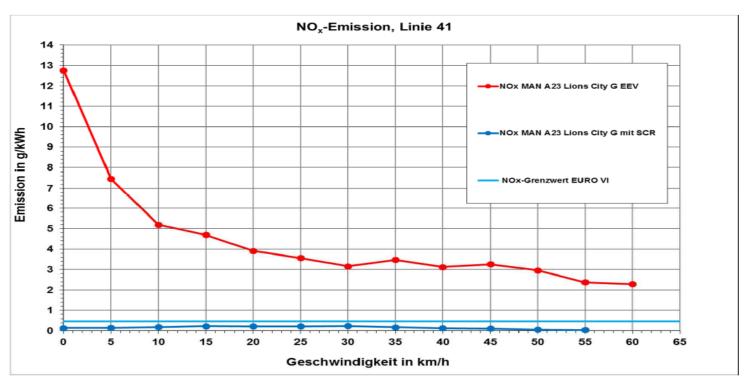
Abgasemissionsmessungen auf der Linienführung der Linie 41 mit einem mit einer SCR-Abgasnachbehandlung nachgerüsteten MAN A23 Gelenkbus.



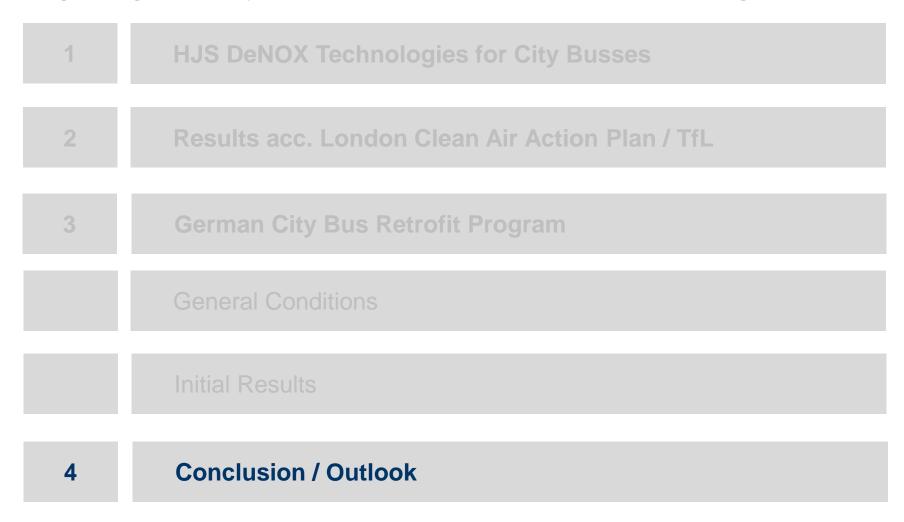
MAN A23 – 10,5 L – 235 kW - EEV

German City Bus Retrofit Program – Initial Results

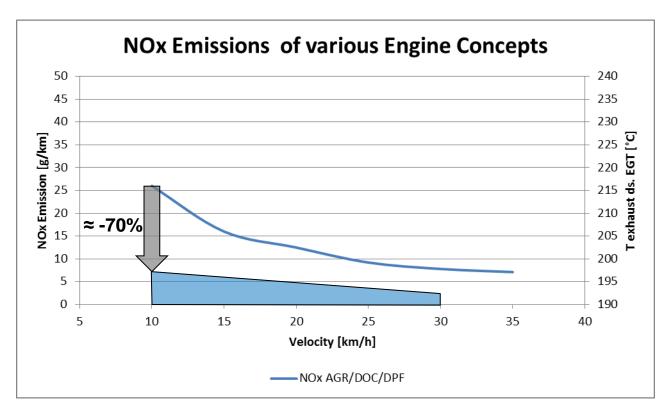
ABGASEMISSIONSMESSUNGEN STRECKENBEZOGENE EMISSIONSMASSEN


Normal city bus route, not 100% acc. "German test procedure"

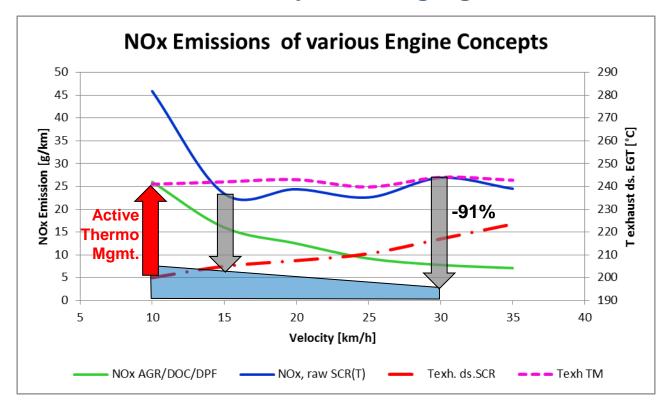
German City Bus Retrofit Program – Results compared to EU VI


ABGASEMISSIONSMESSUNGEN LEISTUNGSBEZOGENE EMISSIONSMASSEN

Some applications can achieve emissions at Euro VI level



Conclusions



 NO_X reduction targets (apporx. 70%) of German City Bus Retrofit Program in a city bus cycle seems to be comforable at the face of it, but:

- Maintaining of the serial OBD / NC warning and inducement systems
- NO_X reduction of 85% over entire cycle even at -7°C ambient temperature

Outlook – extremely challenging!

- Integration of a SCR(T) system with significatnly increased NO_X reduction into the serial OBD / NC warning and inducement system
- NO_X reduction of 79 to 91% at exhaust gas temperature between 200 and 220°C
- NO_X reduction of 85% over entire cycle even at lower exhaust gas temperatures due to -7°C ambient temperature

HJS Technology to fullfil German City Bus Retrofit Requirements

- Application of OE series prooved AdBlue dosing components
- Increase of exhaust gas temperature by smart active thermo management to realize high NO_x reduction and ensure DPF regeneration

