

🗣 🎒 Utrecht University

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Health effect due to ultrafine solid particles of increasing concern?

Flemming R. Cassee, PhD ERT

Mechanisms of particle deposition

Electrosta

12thVERT Forum 2022

Clearance micro-size particles within 6-14 hr

Ultrafine particle uptake by epithelial cells + interstitial translocation + lack of macrophage recognition

Size matters in terms of

- > Deposition
- > Clearance
- > Retention
- Biodistribution
- Smallest particles can reach other organs explaining sytemic effects

 They come from different sources

Stone, Cassee et al, EHP, 2017

Diesel, particle trap and thrombus formation A study in volunteers

Particle Traps Prevent Adverse Vascular and Prothrombotic Effects of Diesel Engine Exhaust Inhalation in Men

Contraction of blood vessel (ex vivo)

Absorbed components on ultrafineparticles seem to drive the response

log[phenylephrine] (M)

Characterization of exposure conditions

	Filtered air	Diesel exhaust	Filtered exhaust	Carbon
PM (teflon filter), μg/m ³	<1	348 ± 64	6 ± 16	70 ± 28
Particle number, $\times 1000/cm^3$	<1	1198 ± 204	2 ± 4	3865 ± 424
Particle diameter, nm	-	67 ± 4	-	37 ± 4

Investigating particle translocation using gold particles

- Why use gold?
- Very small size available
- > Safe to use
- > Techniques to measure very low levels
- Low levels of gold in the body (background)

Inhalation of gold nanoparticles

5-15 nm; 5. 10⁶ per cc

- 16 healthy volunteers
- 2-hour inhalation of gold nanoparticles
- Measure gold in blood after the exposure

Translocation: particle size

Clinical exposures

Murine exposures

Visualising translocated nanoparticles

Raman spectroscopy

Scans on atherosclerotic plaque

Raman Spectra from lung and

Gold particles on a glass slide

Gold nanoparticles reach areas of vascular disease

Courtesy Mark Miller, Miller (2014). Biochem Soc Trans 42:1006-11

Gold nanoparticles reach the systemic circulation

Maternal Exposure and Translocation of AuNP

- Intravenously injected monodisperse, negatively charged, 1.4 nm, 18 nm and 80 nm gold particle 198AuNP (5, 3 and 27 µg/rat)
- Translocation from maternal blood into the fetus is NP-size dependent

35

30

Aviation emissions

Globally, air transport has been growing rapidly

• Both passengers and freight

This results in huge increases in emissions of:

- Gases: CO, NO_x, SO_x, O₃
- Fine and ultrafine particulates (UFPs)

As well as those produced by:

- Ground service vehicles
- Passenger vehicles

Exposure is concerning for airport staff but also those living and working near by

- Aviation UFPs detected 18km away
- Including indoors

Airport study

- All participants received a 5-hour exposure to ambient air nearby Schiphol Airport,
 - a runway intersection and the city of Amsterdam
- Health assessment before and after every exposure

Summary of exposure variables. Values are averages for a 5-hr period as measured in the exposure cabin.

Exposure day	Mass	PNC	BC	NO ₂	СО	SO_2	03	Temperatu re	rH
	(µg/m³)	(#/cm ³)	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(°C)	(%)
Average	23.1	53,469	0.6	28.2	638	2.0	35.7	23.3	54
SD	8.3	43,776	0.4	12.2	83	0.9	14.4	2.7	7
Highest	47.5	173,187	1.9	60.2	830	3.2	78.6	28.6	66
Lowest	10.6	10,520	0.1	12.4	494	1.2	8.8	15.7	40

Mass concentrations are based on Filter measurements. PNC = particle number counts. See Method section for more details

DL= Below the detection limit of the instrument

Measure health indicators

- > Spirometry (lung function)
- > fractional exhaled nitric oxide (inflammation)
- > ECG (heart function) & blood pressure
- > Metabolome (oxidative stress) in urine

BOLD = statistically significant

Single-pollutant models

Environment International 141 (2020) 105779

SEVIER

Contents lists available at ScienceDirect Environment International

journal homepage: www.elsevier.com/locate/envint

Effects of short-term exposures to ultrafine particles near an airport in healthy subjects

A. Lammers^a, N.A.H. Janssen^b, A.J.F. Boere^b, M. Berger^a, C. Longo^a, S.J.H. Vijverberg^a, A.H. Neerincx^a, A.H. Maitland - van der Zee^a, F.R. Cassee^{b,c,*}

														A. Lammers,
Outcome		PNC ^a					BCb					NO ₂ c		A.H. Neerinc
		N = 86					N=86					N = 86		
	Est.	9!	5%C	I		Est.	9	5%C	I]	Est.	95	5%0	CI
FVC (mL)	-5.88	-11.06	-	-0.03		38.96	-23.67	-	101.60		0.57	-20.78	_	21.92
FEV1 (mL)	-4.04	-9.33	-	2.38	I .	27.68	-28.96	-	100.50		-11.09	-30.77	_	16.78
FEV1/VC	0.00	0.00	_	0.00		0.00	-0.01	_	0.01		0.00	0.00	_	0.00
PEF (L/s)	-0.01	-0.03	-	0.02		0.16	-0.08	-	0.42		-0.05	-0.12	_	0.05
FeNO (ppb)	0.02	-0.09	-	0.14		0.24	-0.96	-	1.61		0.28	-0.12	_	0.72
HR _{sitting} (bpm)	-0.09	-0.37	_	0.19		-1.39	-4.43	_	2.39		-0.40	-1.46	_	0.82
Saturation (%)	0.00	-0.04	_	0.05		0.08	-0.47	-	0.57	1	-0.04	-0.21	-	0.14
BP _{sys} (mmHg)	-0.14	-0.38	_	0.08		3.18	0.49	-	5.74		0.81	-0.12	_	1.72
BP _{dia} (mmHg)	-0.14	-0.37	_	0.10		2.90	0.22	-	5.55		1.12	0.23	-	2.05
ECG - HR (bpm)	0.27	-0.03	_	0.61	L 1	0.78	-2.98	-	4.61		0.04	-1.18	-	1.33
ECG - PR (ms)	-0.17	-0.58	-	0.15		4.81	1.37	-	10.25		0.99	-0.36	_	2.54
ECG - QRS (ms)	0.10	-0.10	-	0.30		-1.20	-3.53	-	1.13		0.06	-0.73	_	0.86
ECG - QTc (ms)	0.79	0.16	-	1.52		0.43	-7.26	_	9.01		-0.04	-2.64	_	2.82

outcome		PM2.5 ^c				COd				0 ₃ c					
		N=86					N=86					N=86			
	[Est	95	% C	п	1	Est.	9	5%C	I	1	Est.	9	5%C	I
FVC (mL)		22.74	-6.96	-	52.44		10.47	-345.99	-	366.92		2.98	-17.74	-	23.71
FEV1 (mL)		26.32	-2.39	-	58.27		7.67	-355.71	-	377.43		6.72	-15.37	-	26.76
FEV1/VC		0.00	0.00	-	0.01		0.00	-0.04	-	0.04		0.00	0.00	-	0.00
PEF (L/s)		0.02	-0.10	_	0.14		-0.37	-1.86	_	0.93		0.03	-0.05	_	0.11
FeNO (ppb)		-0.30	-0.88	_	0.30		-0.54	-7.34	_	6.65		-0.36	-0.75	_	0.04
HR _{sitting} (bpm)		0.17	-1.32	-	1.59		2.78	-15.05	-	20.25		1.16	0.11	-	2.09
Saturation (%)		0.00	-0.25	-	0.23		0.52	-2.34	-	3.27		-0.09	-0.27	-	0.07
BP _{sys} (mmHg)		-0.21	-1.48	-	0.96		10.61	-4.72	-	24.36		-0.22	-1.09	-	0.61
BP _{dia} (mmHg)		0.05	-1.22	-	1.24		11.60	-3.50	-	25.64		-1.09	-1.94	-	-0.29
ECG - HR (bpm)		0.36	-1.48	-	1.91		8.66	-11.50	-	28.33		-0.01	-1.18	-	1.12
ECG - PR (ms)		0.13	-1.94	-	1.79		2.26	-20.51	-	23.68		-0.12	-2.03	_	1.05
ECG - QRS (ms)		0.10	-0.99	-	1.19		1.04	-11.97	-	14.05		-0.23	-0.98	-	0.51
ECG - QTc (ms)		0.60	-3.16	_	4.02		16.24	-24.94	_	61.48		0.83	-1.75	_	3.25

risk of ventricular dysrhythmia and sudden death.

OT	<u> </u>	QT me	asured
QIc	=√	RR	(in seconds)

Results of the single pollutant models were corrected for room temperature and relative humidity respiratory symptoms, age, gender and BMI. $12 \text{th} \sqrt{2R} per 10,000,00 \text{ticles/cm}^3$; $b = per 1 \mu g/m^3$; $c = per 10 \mu g/m^3$; $d = per 1000 \mu g/m^3$. Numbers in bold are significant (p<0.05)

Toxicological impact of exposure

Inflammation (pulmonary and systemic)

- > Infiltration of mouse airways by neutrophils, lymphocytes and eosinophils
- > Heightened IL-6 in serum of asthmatic patients

Oxidative stress

- Production of ROS by bronchial epithelial cells
- Depletion of antioxidants in cell-free systems

Reduced lung and cardiovascular function

> Decreased forced vital capacity and prolonged QT intervals in healthy individuals

International Journal of Hygiene and Environmental Health

journal homepage: www.elsevier.com/locate/ijheh

Alterations to the urinary metabolome following semi-controlled short exposures to ultrafine particles at a major airport

Liza Selley ^{a,*,1}, Ariana Lammers ^{b,1}, Adrien Le Guennec ^c, Milad Pirhadi ^d, Constantinos Sioutas ^d, Nicole Janssen ^e, Anke H. Maitland - van der Zee ^b, Ian Mudway ^{f,g}, Flemming Cassee e,h

> To identify changes to the human urinary metabolome that accompany exposure to UFP at Amsterdam Schiphol Airport

To establish which emissions sources are responsible for these changes

Impact of major pollutants on urinary metabolome

Total PNC associated with reductions in urinary taurine and dimethylamine concentration

- This effect was attributable to PM within the 6-20 nm fraction
- But not larger particles
- Or pollutant gases which had distinct and smaller effects than PNC

	Total PNC	PNC < 20nm	PNC > 50nm	
Metabolite	(5-95p = 120,280 particles/ cm ³)	(5-95p = 51,160 particles/ cm ³)	$(5-95p = 3,900 \text{ particles/ cm}^3)$	
	Coef.	Coef.	Coef.	
	(lower – upper Cl)	(lower – upper Cl)	(lower – upper Cl)	
Taurine	-0.263	-0.298	-0.044	
	(-0.507 – -0.020)	(-0.550 – -4.709)	(-0.396 - 0.307)	
Dimethylamine	-0.023	-0.023	0.006	
	(-0.040 – -0.067)	(-0.040 – -0.067)	(-0.018 - 0.029)	
Unassigned N-acetylated compound	0.000	-0.001	0.000	
	(-0.002 – 0.002)	(-0.002 – 0.001)	(-0.002 – 0.003)	
3-Hydroxyisovalerate	-0.001	0.000	-0.002	
	(-0.005 – 0.004)	(0.000 - 0.000)	(-0.008 – 0.004)	
3-Hydroxyisobutyrate	-0.002	-0.002	-0.002	
	(-0.005 – 0.001)	(-0.005 – 0.002)	(-0.006 – 0.002)	
N-Acetylglutamine	0.000	0.002	0.001	
	(-0.015 – 0.015)	(-0.014 – 0.017)	(-0.022 – 0.023)	

Taurine synthesis slows during oxidative stress

Source apportionment for PNCs

Source apportionment: Pirhadi et al

Pirhadi *et* al. used a positive matrix factorisation source apportionment model to calculate PNCs for different emission sources at the airport

• Time resolved PNC size distribution data, auxiliary pollutant concentrations, aircraft arrival/departure timings, highway traffic counts, meteorological data

Source-dependent alterations to the metabolome

- Reductions in urinary taurine and dimethylamine concentration associated with aviation emissions
- As did pyroglutamate a marker of glutathione synthesis

	Total aviation PNC
	(5-95p= 73485 particles/ cm ³)
	Coef.
Metabolite	(lower – upper Cl)
Taurine	-0.263
	(-0.5030.023)
Dimethylamine	-0.021
	(-0.0370.005)
Pyroglutamate	-0.005
	(-0.010 - < 0.000)
3-aminoisobutyrate	0.002
	(-0.006 -0.010)
Methylguanidine	-0.001
	(-0.001- < 0.000)
Isocitrate	0.001
	(-0.001 - 0.003)

- UFPs emitted by ground service vehicles also influenced glutathione synthesis pathways
- Non-airport traffic UFPs caused a different response, including altered energy metabolism

Metabolomic change is dependent on flight behaviours

• Focusing on **landing UFPs** doubles the association with reductions in urinary taurine concentration

	Landing	PNC							
	(5-95p = 31200 particles/ cm ³)								
			Accounting for non-airport						
		Accounting for airport	traffic PNC						
		traffic PNC	(5-95p= 15290 particles/						
	Single pollutant model	(5-95p= 5077 particles/ cm ³)	cm ³)						
	Coef.	Coef.	Coef.						
	(lower – upper Cl)	(lower – upper Cl)	(lower – upper CI)						
	-0.413	-0.414	-0.414						
Taurine	(-0.6890.136)	(-0.6920.136)	(-0.6920.136)						
	-0.031	-0.031	-0.031						
Dimethylamine	(-0.0490.013)	(-0.0490.012)	(-0.0500.013)						
	-0.004	-0.002	-0.002						
Pyroglutamate	(-0.010 - 0.002)	(-0.004 - < 0.000)	(-0.004 - 0.000)						
	0.001	0.001	0.002						
Isocitrate	(-0.001- 0.003)	(-0.001 - 0.004)	(-0.001 - 0.004)						
	-0.001	-0.001	-0.001						
2-hydroxyisobutyrate	(-0.004 - 0.002)	(-0.004 - 0.002)	(-0.004 - 0.002)						

• The associations with energy metabolism and fuel additive exposure are not present

Metabolomic change is dependent on flight behaviours

- UFPs produced during take-off <u>do not</u> associate significantly with reduced urinary taurine
 - Perhaps due to compositional differences

	1	Take-off PNC						
	(5-95p= 56130 particles/ cm ³)							
			Accounting for non-airport					
		Accounting for airport	traffic PNC					
		traffic PNC	(5-95p= 15290 particles/					
	Single pollutant model	(5-95p= 5077 particles/ cm ³)	cm³)					
	Coef.	Coef.	Coef.					
Metabolite	(lower – upper CI)	(lower – upper Cl)	(lower – upper Cl)					
	-0.224	-0.223	-0.232					
Taurine	(-0.495 - 0.047)	(-0.494 - 0.047)	(-0.513 - 0.050)					
	-0.019	-0.019	-0.020					
Dimethylamine	(-0.0370.001)	(-0.0370.001)	(-0.0380.001)					
	-0.006	-0.006	-0.008					
Pyroglutamate	(-0.0120.001)	(-0.0120.001)	(-0.0140.002)					
	0.001	0.001	0.002					
Isocitrate	(-0.001 - 0.003)	(-0.001 - 0.003)	(> 0.000- 0.004)					
	-0.002	-0.002	-0.003					
2-hydroxyisobutyrate	(-0.005 - > 0.000)	(-0.005 - < 0.000)	(-0.006 - < 0.000)					

Accounting for co-exposure to UFPs from non-airport traffic unmasked associations with TCA cycle activity and a
potential marker of fuel additive exposure

Our study identified changes to the human urinary metabolome that associate with different UFP emission sources at Amsterdam Schiphol Airport.

Aviation UFP emissions caused the greatest impact, with some changes being dependent on flight behaviours

Generally, the responses are adaptive- heightened antioxidant activity and control of NO synthesis

Summary airport study acute exposures

Health marker	Location	Associations UFP aircrafts	Associations UFP road traffic
Among school children (panel study		
Daily symptoms	Home	Yes, especially for wheezing	Yes, especially for wheezing and shortness of
		and phlegm giving up	breath at rest
Medication use	Home	Yes	Yes
Daily long function	Home	No	Yes, in de morning
Longfunction, under	School	No, not consistent	No, not consistent
supervision			
NO exhaled air	School	No, inconsistent for children	No, inconsistent for children with and
		with and without asthma	without asthma
	Research	among healthy adults (volun	teer study)
Long function		Yes, voor FVC	No
NO exhaled air; oxygen		No	No
saturation	Near the airport		
Heart function		Yes, voor QTc	No, not consistent
Blood pressure		No	Yes
Urine Oxidative stress		Yes	Yes, less evenident
Toxicological researc	h lung cells	Degi	ree of harmfulness
Cell damage and	Near Schiphol	Yes, though no apparent differen	nces in reactivity between UFP collected at
production of signaling	and at the	different wind directions (airport	t vs. non-airport) and directly from a turbine
substances for acute	source	engine	
inflammatory reactions			

Conclusions ultrafine and health risks

> Differences in toxicity among sources

 Short-term exposure to high levels of UFP associated with decreased lung function and prolonged repolarization of the heart, oxidative stress as well as arterial stiffness directly after exposure in adults

 Risk is related to both the toxic potency and the level of exposure/dose

 Plausible that ultrafine particles can affect heart, brain and even cross the placenta after inhalation

WHO global air quality guidelines

Particulate matter (PM₂₅ and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

Offers new good practice statements on the management of e.g. black carbon/elemental carbon and ultrafine particles).

Work in progress at RIVM: Effects of long-term exposure to ultrafine particles from aviation around Schiphol airport

Acknowledgement

- > Mark R. Miller
- Nick MillsDave Newby
- > Roger Duffin

- > John Boere
- > Paul Fokkens
- > Daan Leseman
- Nicole Janssen
- > Ruiwen He

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Institute for Risk Assessment Sciences (IRAS)

Marije Lammers Anke-Hilse Maitland

Milad Pirhadi

>

- > Amirhosein Mousavi
- > Mohammad H Sowlat
- Constantinos Sioutas

